


Chapter 1

Introduction

In clinical research, during the planning stage of a clinical study, the follow-
ing questions are of particular interest to the investigators: (i) how many
subjects are needed in order to have a desired power for detecting a clin-
ically meaningful difference (e.g., an 80% chance of correctly detecting a
clinically meaningful difference), and (ii) what's the trade-off between cost-
effectiveness and power if only a small number of subjects are available for
the study due to limited budget and/or some medical considerations. To
address these questions, a statistical evaluation for sample size calculation
is often performed based on some statistical inference of the primary study
endpoint with certain assurance. In clinical research, sample size calcula-
tion plays an important role for assuring validity, accuracy, reliability, and
integrity of the intended clinical study.

For a given study, sample size calculation is usually performed based
on some statistical criteria controlling type I and/or type II errors. For
example, we may choose sample size in such a way that there is a desired
precision at a fixed confidence level (i.e., fixed type I error). This approach
is referred to as precision analysis for sample size calculation. The method
of precision analysis is simple and easy to perform and yet it may have a
small chance of correctly detecting a true difference. As an alternative, the
method of pre-study power analysis is usually conducted to estimate sample
size. The concept of the pre-study power analysis is to select required sam-
ple size for achieving a desired power for detecting a clinically/scientifically
meaningful difference at a fixed type I error rate. In clinical research, the
pre-study power analysis is probably the most commonly used method for
sample size calculation. In this book, we will focus on sample size calcula-
tion based on power analysis for various situations in clinical research.

In clinical research, to provide an accurate and reliable sample size cal-
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culation, an appropriate statistical test for the hypotheses of interest is
necessarily derived under the study design. The hypotheses should be es-
tablished to reflect the study objectives under the study design. In prac-
tice, it is not uncommon to observe discrepancies among study objective
(hypotheses), study design, statistical analysis (test statistic), and sample
size calculation. These discrepancies can certainly distort the validity and
integrity of the intended clinical trial.

In the next section, regulatory requirement regarding the role of sample
size calculation in clinical research is discussed. In Section 1.2, we pro-
vide some basic considerations for sample size calculation. These basic
considerations include study objectives, design, hypotheses, primary study
endpoint, and clinically meaningful difference. The concepts of type I and
type II errors and procedures for sample size calculation based on precision
analysis, power analysis, probability assessment, and reproducibility prob-
ability are given in Section 1.3. Aim and structure of the book is given in
the last section.

1.1 Regulatory Requirement

As indicated in Chow and Liu (1998), the process of drug research and de-
velopment is a lengthy and costly process. This lengthy and costly process
is necessary not only to demonstrate that the efficacy and safety of the
drug product under investigation, but also to ensure the study drug prod-
uct possesses good drug characteristics such as identity, strength, quality,
purity, and stability after it is approved by the regulatory authority. This
lengthy process includes drug discovery, formulation, animal study, labora-
tory development, clinical development, and regulatory submission. As a
result, clinical development plays an important role in the process of drug
research and development because all of the tests are conducted on humans.
For approval of a drug product under investigation, the United States Food
and Drug Administration (FDA) requires that at least two adequate and
well-controlled clinical studies be conducted for providing substantial evi-
dence regarding the efficacy and safety of the drug product (FDA, 1988a).
However, the following scientific/statistical questions are raised: (i) what is
the definition of an adequate and well-controlled clinical study? (ii) what
evidence is considered substantial? (iii) why do we need at least two stud-
ies? (iv) will a single large trial be sufficient to provide substantial evidence
for approval? and (v) if a single large trial can provide substantial evidence
for approval, how large is considered large? In what follows, we will address
these questions.
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Table 1.1.1: Characteristics of an Adequate and Well-Controlled Study

Criteria Characteristics
Objectives
Methods of analysis

Design

Selection of subjects

Assignment of subjects

Participants of studies

Assessment of responses
Assessment of the effect

Clear statement of investigation's purpose
Summary of proposed or actual methods of
analysis
Valid comparison with a control to provide a
quantitative assessment of drug effect
Adequate assurance of the disease or
conditions under study
Minimization of bias and assurance of
comparability of groups
Minimization of bias on the part of subjects,
observers, and analysis
Well-defined and reliable
Requirement of appropriate statistical
methods

1.1.1 Adequate and Well-Controlled Clinical Trials

Section 314.126 of 21 CFR (Code of Federal Regulation) provides the def-
inition of an adequate and well-controlled study, which is summarized in
Table 1.1.1.

As it can be seen from Table 1.1.1, an adequate and well-controlled
study is judged by eight characteristics specified in the CFR. These char-
acteristics include study objectives, methods of analysis, design, selection
of subjects, assignment of subjects, participants of studies, assessment of
responses, and assessment of the effect. For study objectives, it is required
that the study objectives be clearly stated in the study protocol such that
they can be formulated into statistical hypotheses. Under the hypotheses,
appropriate statistical methods should be described in the study protocol.
A clinical study is not considered adequate and well-controlled if the em-
ployed study design is not valid. A valid study design allows a quantitative
assessment of drug effect with a valid comparison with a control. The selec-
tion of a sufficient number of subjects with the disease or conditions under
study is one of the keys to the integrity of an adequate and well-controlled
study. In an adequate and well-controlled clinical study, subjects should
be randomly assigned to treatment groups to minimize potential bias by
ensuring comparability between treatment groups with respect to demo-
graphic variables such as age, gender, race, height and weight, and other
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patient characteristics or prognostic factors such as medical history and
disease severity. An adequate and well-controlled study requires that the
primary study endpoint or response variable should be well-defined and
assessed with certain degree of accuracy and reliability. To achieve this
goal, statistical inferences on the drug effect should be obtained based on
the responses of the primary study endpoint observed from the sufficient
number of subjects using appropriate statistical methods derived under the
study design and objectives.

1.1.2 Substantial Evidence

The substantial evidence as required in the Kefaurer-Harris amendments
to the Food and Drug and Cosmetics Act in 1962 is defined as the evi-
dence consisting of adequate and well-controlled investigations, including
clinical investigations, by experts qualified by scientific training and expe-
rience to evaluate the effectiveness of the drug involved, on the basis of
which it could fairly and responsibly be concluded by such experts that the
drug will have the effect it purports to have under the conditions of use
prescribed, recommended, or suggested in the labeling or proposed label-
ing thereof. Based on this amendment, the FDA requests that reports of
adequate and well-controlled investigations provide the primary basis for
determining whether there is substantial evidence to support the claims of
new drugs and antibiotics.

1.1.3 Why at Least Two Studies?

As indicated earlier, the FDA requires at least two adequate and well-
controlled clinical trials be conducted for providing substantial evidence
regarding the effectiveness and safety of the test drug under investigation
for regulatory review and approval. In practice, it is prudent to plan for
more than one trial in the phase III study because any or combination
of the following reasons: (i) lack of pharmacological rationale, (ii) a new
pharmacological principle, (iii) phase I and phase II data are limited or
unconvincing, (iv) a therapeutic area with a history of failed studies or
failures to confirm seemingly convincing results, (v) a need to demonstrate
efficacy and/or tolerability in different sub-populations, with different co-
medication or other interventions, relative to different competitors, and (vi)
any other needs to address additional questions in the phase III program.

Shao and Chow (2002) and Chow, Shao and Hu (2002) pointed out
that the purpose of requiring at least two clinical studies is not only to
assure the reproducibility but also to provide valuable information regard-
ing generalizability. Reproducibility is referred to as whether the clinical
results are reproducible from location (e.g., study site) to location within
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the same region or from region to region, while generalizability is referred
to as whether the clinical results can be generalized to other similar pa-
tient populations within the same region or from region to region. When
the sponsor of a newly developed or approved drug product is interested in
getting the drug product into the marketplace from one region (e.g., where
the drug product is developed and approved) to another region, it is a con-
cern that differences in ethnic factors could alter the efficacy and safety of
the drug product in the new region. As a result, it is recommended that a
bridging study be conducted to generate a limited amount of clinical data
in the new region in order to extrapolate the clinical data between the two
regions (ICH, 1998a).

In practice, it is often of interest to determine whether a clinical trial
that produced positive clinical results provides substantial evidence to as-
sure reproducibility and generalizability of the clinical results. In this chap-
ter, the reproducibility of a positive clinical result is studied by evaluating
the probability of observing a positive result in a future clinical study with
the same study protocol, given that a positive clinical result has been ob-
served. The generalizability of clinical results observed from a clinical trial
will be evaluated by means of a sensitivity analysis with respect to changes
in mean and standard deviation of the primary clinical endpoints of the
study.

1.1.4 Substantial Evidence with a Single Trial

Although the FDA requires that at least two adequate and well-controlled
clinical trials be conducted for providing substantial evidence regarding
the effectiveness of the drug product under investigation, a single trial may
be accepted for regulatory approval under certain circumstances. In 1997,
FDA published the Modernization Act (FDAMA), which includes a provi-
sion (Section 115 of FDAMA) to allow data from one adequate and well-
controlled clinical trial investigation and confirmatory evidence to establish
effectiveness for risk/benefit assessment of drug and biological candidates
for approval under certain circumstances. This provision essentially codi-
fied an FDA policy that had existed for several years but whose application
had been limited to some biological products approved by the Center for
Biologic Evaluation and Research (CBER) of the FDA and a few pharma-
ceuticals, especially orphan drugs such as zidovudine and lamotrigine. As it
can be seen from Table 1.1.2, a relatively strong significant result observed
from a single clinical trial (say, p-value is less than 0.001) would have about
90% chance of reproducing the result in future clinical trials.

Consequently, a single clinical trial is sufficient to provide substantial
evidence for demonstration of efficacy and safety of the medication under
study. However, in 1998, FDA published a guidance which shed the light
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Table 1.1.2: Estimated Reproducibility Probability Based on
Results from a Single Trial

t-statistic
1.96
2.05
2.17
2.33
2.58
2.81
3.30

p- value
0.050
0.040
0.030
0.020
0.010
0.005
0.001

Reproducibility
0.500
0.536
0.583
0.644
0.732
0.802
0.901

on this approach despite that the FDA has recognized that advances in
sciences and practice of drug development may permit an expanded role
for the single controlled trial in contemporary clinical development (FDA,
1998b).

1.1.5 Sample Size

As the primary objective of most clinical trials is to demonstrate the ef-
fectiveness and safety of drug products under investigation, sample size
calculation plays an important role at the planning stage to ensure that
there are sufficient of subjects for providing accurate and reliable assess-
ment of the drug products with certain statistical assurance. In practice,
hypotheses regarding medical or scientific questions of the study drug are
usually formulated based on the primary study objectives. The hypotheses
are then evaluated using appropriate statistical tests under a valid study
design to ensure that the test results are accurate and reliable with certain
statistical assurance. It should be noted that a valid sample size calculation
can only be done based on appropriate statistical tests for the hypotheses
which can reflect the study objectives under a valid study design. It is then
suggested that the hypotheses be clearly stated when performing a sample
size calculation. Each of the above hypotheses has different requirement
for sample size in order to achieve a desired statistical assurance (e.g., 80%
power or 95% assurance in precision).

Basically, sample size calculation can be classified into sample size es-
timation/determination, sample size justification, sample size adjustment,
and sample size re-estimation. Sample size estimation/determination is re-
ferred to the calculation of required sample size for achieving some desired
statistical assurance of accuracy and reliability such as an 80% power, while
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sample size justification is to provide statistical justification for a selected
sample size, which is often a small number due to budget constraints and/or
some medical considerations. In most clinical trials, sample size is neces-
sarily adjusted for some factors such as dropouts or covariates in order to
yield sufficient number of evaluable subjects for a valid statistical assess-
ment of the study medicine. This type of sample size calculation is known
as sample size adjustment. In many clinical trials, it may be desirable to
conduct interim analyses (planned or unplanned) during the conduct of the
trial. For clinical trials with planned or unplanned interim analyses, it is
suggested that sample size be adjusted for controlling an overall type I error
rate at the nominal significance level (e.g., 5%). In addition, when conduct
interim analyses, it is also desirable to perform sample size re-estimation
based on cumulative information observed up to a specific time point to
determine whether the selected sample size is sufficient to achieve a desired
power at the end of the study. Sample size re-estimation may be performed
in a blinded or unblinded fashion depending upon whether the process of
sample size re-estimation will introduce bias to clinical evaluation of sub-
jects beyond the time point at which the interim analysis or sample size
re-estimation is performed. In this book, however, our emphasis will be
placed on sample size estimation/determination. The concept can be easily
applied to (i) sample size justification for a selected sample size, (ii) sample
size adjustment with respect to some factors such as dropouts or covari-
ates, and (iii) sample size re-estimation in clinical trials with planned or
unplanned interim analyses.

1.2 Basic Considerations

In clinical research, sample size calculation may be performed based on pre-
cision analysis, power analysis, probability assessment, or other statistical
inferences. To provide an accurate and reliable sample size calculation, it is
suggested that an appropriate statistical test for the hypotheses of interest
be derived under the study design. The hypotheses should be established to
reflect the study objectives and should be able to address statistical/medical
questions of interest under the study design. As a result, a typical procedure
for sample size calculation is to determine or estimate sample size based on
an appropriate statistical method or test, which are derived under the hy-
potheses and the study design, for testing the hypotheses in order to achieve
certain degree of statistical inference (e.g., 95% assurance or 80% power)
on the effect of the test drug under investigation. As indicated earlier, in
practice it is not uncommon to observe discrepancies among study objective
(hypotheses), study design, statistical analysis (test statistic), and sample
size calculation. These discrepancies certainly have an impact on sample
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size calculation in clinical research. Therefore, it is suggested that the fol-
lowing be carefully considered when performing sample size calculation: (i)
the study objectives or the hypotheses of interest be clearly stated, (ii) a
valid design with appropriate statistical tests be used, (iii) sample size be
determined based on the test for the hypotheses of interest, and (iv) sample
size be determined based on the primary study endpoint and (v) the clini-
cally meaningful difference of the primary study endpoint that the clinical
study is intended to detect.

1.2.1 Study Objectives

In clinical research, it is important to clearly state the study objectives of
intended clinical trials. The objectives of clinical studies may include one
or more of the following four objectives: (i) demonstrate/confirm efficacy,
(ii) establish a safety profile, (iii) provide an adequate basis for assess-
ing the benefit/risk relationship to support labeling, and (iv) establish the
dose-response relationship (ICH, 1998b). Since most clinical studies are
conducted for clinical evaluation of efficacy and safety of drug products un-
der investigation, it is suggested that the following study objectives related
to efficacy and safety be clarified before choosing an appropriate design
strategy for the intended trial.

Equivalence
Safety

Non-inferiority Superiority

Efficacy
Equivalence

Non-inferiority
Superiority

E/E
N/E
S/E

E/N
N/N
S/N

E/S
N/S
S/S

For example, if the intent of the planned clinical study is to develop
an alternative therapy to the standard therapy that is quite toxic, then
we may consider the strategy of E/S, which is to show that the test drug
has equal efficacy but less toxicity (superior safety). The study objectives
will certainly have an impact on the sample size calculation. Sample size
calculation provides required sample size for achieving the study objectives.

1.2.2 Study Design

In clinical trials, different designs may be employed to achieve the study
objectives. A valid study design is necessarily chosen to collect relevant
clinical information for achieving the study objectives by addressing some
statistical/medical hypotheses of interest, which are formulated to reflect
the study objectives.
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In clinical research, commonly employed study designs include parallel-
group design, crossover design, enrichment design, and titration design (see,
e.g., Chow and Liu, 1998). The design strategy can certainly affect sample
size calculation because statistical methods or tests are usually derived
under the hypotheses and study design. As an example, Fleming (1990)
discussed the following design strategies that are commonly used in clinical
therapeutic equivalence/non-inferiority and superiority trials.

Design
Classical

Active Control
Dual Purpose

Description
STD + TEST versus STD

TEST versus STD
TEST versus STD versus STD + TEST

The classical design is to compare the combination of a test drug (TEST)
and a standard therapy (STD) (i.e., STD + TEST) against STD to deter-
mine whether STD+TEST yields superior efficacy. When the intent is to
determine whether a test drug could be used as an alternative to a stan-
dard therapy, one may consider an active control design involving direct
randomization to either TEST or STD. This occurs frequently when STD
is quite toxic and the intent is to develop alternative therapy that are less
toxic, yet equally efficacious. To achieve both objectives, a dual purpose
design strategy is useful.

Note that in practice, a more complicated study design, which may
consist of a combination of the above designs, may be chosen to address
more complicated statistical/medical questions regarding the study drug.
In this case, standard procedure for sample size calculation may not be
directly applicable and a modification will be necessary.

1.2.3 Hypotheses

In most clinical trials, the primary study objective is usually related to the
evaluation of the effectiveness and safety of a drug product. For example,
it may be of interest to show that the study drug is effective and safe as
compared to a placebo for some intended indications. In some cases, it may
be of interest to show that the study drug is as effective as, superior to,
or equivalent to an active control agent or a standard therapy. In practice,
hypotheses regarding medical or scientific questions of the study drug are
usually formulated based on the primary study objectives. The hypotheses
are then evaluated using appropriate statistical tests under a valid study
design.

In clinical trials, a hypothesis is usually referred to as a postulation,
assumption, or statement that is made about the population regarding the
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effectiveness and safety of a drug under investigation. For example, the
statement that there is a direct drug effect is a hypothesis regarding the
treatment effect. For testing the hypotheses of interest, a random sample is
usually drawn from the targeted population to evaluate hypotheses about
the drug product. A statistical test is then performed to determine whether
the null hypothesis would be rejected at a pre-specified significance level.
Based on the test result, conclusion(s) regarding the hypotheses can be
drawn. The selection of hypothesis depends upon the study objectives. In
clinical research, commonly considered hypotheses include point hypothe-
ses for testing equality and interval hypothesis for testing equivalence/non-
inferiority and superiority, which are described below. A typical approach
for demonstration of the efficacy and safety of a test drug under investiga-
tion is to test the following hypotheses

Test for Equality

: I.IT — ^p versus Ha : JJ,T ^ f-ip, (1-2-1)

where ^T and JJLP are the mean response of the outcome variable for the test
drug and the placebo, respectively. We first show that there is a statistically
significant difference between the test drug and the placebo by rejecting
the null hypothesis and then demonstrate that there is a high chance of
correctly detecting a clinically meaningful difference if such difference truly
exists.

Test for Non-Inferiority

In clinical trials, one may wish to show that the test drug is as effective
as an active agent or a standard therapy. In this case, Blackwelder (1982)
suggested testing the following hypotheses:

-^o : ̂ s — IJ>T > ^ versus Ha : us — HT < <^ (1.2.2)

where us is the mean for a standard therapy and <5 is a difference of clinical
importance. The concept is to reject the null hypothesis and conclude that
the difference between the test drug and the standard therapy is less than
a clinically meaningful difference 8 and hence the test drug is as effective
as the standard therapy. This study objective is not uncommon in clinical
trials especially when the test drug is considered to be less toxic, easier to
administer, or less expensive than the established standard therapy.
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Test for Superiority

To show superiority of a test drug over an active control agent or a standard
therapy, we may consider the following hypotheses:

HQ : IJLT ~ PS < <$ versus Ha : HT — Us > $• (1.2.3)

The rejection of the above null hypothesis suggests that the difference be-
tween the test drug and the standard therapy is greater than a clinically
meaningful difference. Therefore, we may conclude that the test drug is
superior to the standard therapy by rejecting the null hypothesis of (1.2.3).
Note that the above hypotheses are also known as hypotheses for testing
clinical superiority. When 6 = 0, the above hypotheses are usually referred
to as hypotheses for testing statistical superiority.

Test for Equivalence

In practice, unless there is some prior knowledge regarding the test drug,
usually we do not know the performance of the test drug as compared to
the standard therapy. Therefore, hypotheses (1.2.2) and (1.2.3) are not
preferred because they have pre-determined the performance of the test
drug as compared the standard therapy. As an alternative, the following
hypotheses for therapeutic equivalence are usually considered:

Ho : \HT ~ t*s\ > $ versus Ha : \pT - (J-s\ < $• (1-2.4)

We then conclude that the difference between the test drug and the stan-
dard therapy is of no clinical importance if the null hypothesis of (1.2.4) is
rejected.

It should be noted that a valid sample size calculation can only be done
based on appropriate statistical tests for the hypotheses which can reflect
the study objectives under a valid study design. It is then suggested that
the hypotheses be clearly stated when performing a sample size calculation.
Each of the above hypotheses has different requirement for sample size in
order to achieve a desired power or precision of the corresponding tests.

1.2.4 Primary Study Endpoint

A study objective (hypotheses) will define what study variable is to be
considered as the primary clinical endpoint and what comparisons or in-
vestigations are deemed most clinically relevant. The primary clinical end-
points depend upon therapeutic areas and the indications that the test
drugs sought for. For example, for coronary artery disease/angina in cardio-
vascular system, patient mortality, is the most important clinical endpoint
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in clinical trials assessing the beneficial effects of drugs on coronary artery
disease. For congestive heart failure, patient mortality, exercise tolerance,
the number of hospitalizations, and cardiovascular morbidity are common
endpoints in trials assessing the effects of drugs in congestive heart failure,
while mean change from baseline in systolic and diastolic blood pressure and
cardiovascular mortality and morbidity are commonly used in hypertension
trials. Other examples include change in forced expiratory volume in 1
second (FEVi) for asthma in respiratory system, cognitive and functional
scales specially designed to assess Alzheimer's disease and Parkinson's dis-
ease in central nervous system, tender joints and pain-function endpoints
(e.g., Western Ontario and McMaster University Osteoarthritis Index) for
osteoarthritis in musculoskeletal system, and the incidence of bone fracture
for osteoporosis in the endocrine system.

It can be seen from above that the efficacy of a test drug in treatment of
a certain disease may be characterized through multiple clinical endpoints.
Capizzi and Zhang (1996) classify the clinical endpoints into primary, sec-
ondary, and tertiary endpoints. Endpoints that satisfy the following criteria
are consider primary endpoints: (i) should be of biological and/or clinical
importance, (ii) should form the basis of the objectives of the trial, (iii)
should not be highly correlated, (iv) should have sufficient power for the
statistical hypotheses formulated from the objectives of the trial, and (v)
should be relatively few (e.g., at most 4). Sample size calculation based on
detecting a difference in some or all primary clinical endpoints may result
in a high chance of false positive and false negative for evaluation of the
test drug. Thus, it is suggested that sample size calculation should be per-
formed based on a single primary study endpoint under certain assumption
of the single primary endpoint. More discussion regarding the issue of false
positive and false negative rates caused by multiple primary endpoints can
be found in Chow and Liu (1998).

1.2.5 Clinically Meaningful Difference

In clinical research, the determination of a clinically meaningful difference,
denoted by 5, is critical in clinical trials such as equivalence/non-inferiority
trials. In therapeutic equivalence trials, 6 is known as the equivalence limit,
while 5 is referred to as the non-inferiority margin in non-inferiority trials.
The non-inferiority margin reflects the degree of inferiority of the test drug
under investigation as compared to the standard therapy that the trials
attempts to exclude.

A different choice of S may affect the sample size calculation and may
alter the conclusion of clinical results. Thus, the choice of <5 is critical at
the planning stage of a clinical study. In practice, there is no gold rule for
determination of 6 in clinical trials. As indicated in the ICH E10 Draft
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Guideline, the non-inferiority margin cannot be chosen to be greater than
the smallest effect size that the active drug would be reliably expected to
have compared with placebo in the setting of the planned trial, but may be
smaller based on clinical judgment (ICH, 1999). The ICH E10 Guideline
suggests that the non-inferiority margin be identified based on past expe-
rience in placebo control trials of adequate design under conditions similar
to those planned for the new trial. In addition, the ICH E10 Guideline
emphasizes that the determination of 5 should be based on both statistical
reasoning and clinical judgment, which should not only reflect uncertainties
in the evidence on which the choice is based, but also be suitably conser-
vative.

In some cases, regulatory agencies do provide clear guidelines for selec-
tion of an appropriate <5 for clinical trials. For example, as indicated by
Huque and Dubey (1990), the FDA proposed some non-inferiority margins
for some clinical endpoints (binary responses) such as cure rate for anti-
infective drug products (e.g., topical antifungals or vaginal antifungals).
These limits are given in Table 1.2.1. For example, if the cure rate is be-
tween 80% and 90%, it is suggested that the non-inferiority margin or a
clinically meaningful difference be chosen as d = 15%.

On the other hand, for bioequivalence trials with healthy volunteers,
the margin of 6 = log(1.25) for mean difference on log-transformed data
such as area under the blood or plasma concentration-time curve (AUC) or
maximum concentration Cmax is considered (FDA, 2001).

In clinical trials, the choice of 6 may depend upon absolute change,
percent change, or effect size of the primary study endpoint. In practice,
a standard effect size (i.e., effect size adjusted for standard deviation) be-
tween 0.25 and 0.5 is usually chosen as 6 if no prior knowledge regarding
clinical performance of the test drug is available. This recommendation is
made based on the fact that the standard effect size of clinical importance
observed from most clinical trials is within the range of 0.25 and 0.5.

Table 1.2.1: Non-Inferiority Margins for Binary Responses

6 (%) Response Rate for the Active Control (%)
20 50-80
15 80-90
10 90-95
5 > 95

Source: FDA Anti-Infective Drug Guideline
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1.3 Procedures for Sample Size Calculation

In practice, sample size may be determined based on either precision analy-
sis or power analysis. Precision analysis and power analysis for sample size
determination are usually performed by controlling type I error (or confi-
dence level) and type II error (or power), respectively. In what follows, we
will first introduce the concepts of type I and type II errors.

1.3.1 Type I and Type II Errors

In practice, two kinds of errors occur when testing hypotheses. If the null
hypothesis is rejected when it is true, then a type I error has occurred. If
the null hypothesis is not rejected when it is false, then a type II error has
been made. The probabilities of making type I and type II errors, denoted
by a and /3, respectively, are given below:

a = Pjtype I error}

= Pjreject HQ when HQ is true},

/3 = P{type II error}

— Pjfail to reject HQ when HQ is false}.

An upper bound for a is a significance level of the test procedure. Power of
the test is defined as the probability of correctly rejecting the null hypothesis
when the null hypothesis is false, i.e.,

Power = 1 — (3

= P(reject HQ when HQ is false}.

As an example, suppose one wishes to test the following hypotheses:

HQ : The drug is ineffective versus Ha : The drug is effective.

Then, a type I error occurs if we conclude that the drug is effective when
in fact it is not. On the other hand, a type II error occurs if we claim that
the drug is ineffective when in fact it is effective. In clinical trials, none
of these errors is desirable. With a fixed sample size a typical approach
is to avoid type I error but at the same time to decrease type II error
so that there is a high chance of correctly detecting a drug effect when
the drug is indeed effective. Typically, when the sample size is fixed, a
decreases as {3 increases and a increases as (3 decreases. The only approach
to decrease both a and ft is to increase the sample size. Sample size is
usually determined by controlling both type I error (or confidence level)
and type II error (or power).
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In what follows, we will introduce the concepts of precision analysis and
power analysis for sample size determination based on type I error and type
II error, respectively.

1.3.2 Precision Analysis

In practice, the maximum probability of committing a type I error that one
can tolerate is usually considered as the level of significance. The confidence
level, 1 — a, then reflects the probability or confidence of not rejecting the
true null hypothesis. Since the confidence interval approach is equivalent to
the method of hypotheses testing, we may determine sample size required
based on type I error rate using the confidence interval approach. For a
(1 — a) 100% confidence interval, the precision of the interval depends on
its width. The narrower the interval is, the more precise the inference
is. Therefore, the precision analysis for sample size determination is to
consider the maximum half width of the (1 — a) 100% confidence interval
of the unknown parameter that one is willing to accept. Note that the
maximum half width of the confidence interval is usually referred to as the
maximum error of an estimate of the unknown parameter. For example,
let yi, y2, ..., yn be independent and identically distributed normal random
variables with mean // and variance cr2. When a2 is known, a (1 — a) 100%
confidence interval for i can be obtained as

where 2Q/2 is the upper (a/2)th quantile of the standard normal distribu-
tion. The maximum error, denoted by E, in estimating the value of /u that
one is willing to accept is then defined as

Thus, the sample size required can be chosen as

2 2

n = - . (1.3.1)

Note that the maximum error approach for choosing n is to attain a specified
precision while estimating \i which is derived only based on the interest of
type I error. A nonpar ametric approach can be obtained by using the
following Chebyshev's inequality
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and hence

(1.3.2)

Note that the precision analysis for sample size determination is very easy
to apply either based on (1.3.1) or (1.3.2). For example, suppose we wish
to have a 95% assurance that the error in the estimated mean is less than
10% of the standard deviation (i.e., 0.1<r). Thus

a n 1Zrt/2—7= — U.Ia.

Hence

The above concept can be applied to binary data (or proportions). In
addition, it can be easily implemented for sample size determination when
comparing two treatments.

1.3.3 Power Analysis

Since a type I error is usually considered to be a more important and/or
serious error which one would like to avoid, a typical approach in hypothesis
testing is to control a at an acceptable level and try to minimize /3 by
choosing an appropriate sample size. In other words, the null hypothesis
can be tested at pre-determined level (or nominal level) of significance with
a desired power. This concept for determination of sample size is usually
referred to as power analysis for sample size determination.

For determination of sample size based on power analysis, the investi-
gator is required to specify the following information. First of all, select a
significance level at which the chance of wrongly concluding that a difference
exists when in fact there is no real difference (type I error) one is willing to
tolerate. Typically, a 5% level of significance is chosen to reflect a 95%) con-
fidence regarding the unknown parameter. Secondly, select a desired power
at which the chance of correctly detecting a difference when the difference
truly exists one wishes to achieve. A conventional choice of power is either
90% or 80%. Thirdly, specify a clinically meaningful difference. In most
clinical trials, the objective is to demonstrate that effectiveness and safety
of a drug under study as compared to a placebo. Therefore, it is important
to specify what difference in terms of the primary endpoint is considered
of clinically or scientifically importance. Denote such a difference by A. If
the investigator will settle for detecting only a large difference, then fewer
subjects will be needed. If the difference is relatively small, a larger study
group (i.e., a larger number of subjects) will be needed. Finally, the knowl-
edge regarding the standard deviation (i.e., a] of the primary endpoint
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considered in the study is also required for sample size determination. A
very precise method of measurement (i.e., a small a] will permit detection
of any given difference with a much smaller sample size than would be
required with a less precise measurement.

Suppose there are two group of observations, namely xi,i = l,...,ni
(treatment) and yi,i = 1, ...,77.2 (control). Assume that xi and yi are inde-
pendent and normally distributed with means /ui and jjL-2 and variances a\
and a\, respectively. Suppose the hypotheses of interest are

HQ : Hi = /j,2 versus HI : n\ ^ /z2-

For simplicity and illustration purpose, we assume (i) a\ and a\ are known,
which may be estimated from pilot studies or historical data, and (ii) n\ =
n-2 — n. Under these assumptions, a Z-statistic can be used to test the
mean difference. The Z-test is given by

Z =

Under the null hypothesis of no treatment difference, Z is distributed as
N(0,1). Hence, we reject the null hypothesis when

\Z\ > za/2.

Under the alternative hypothesis that //i = //2+^ (without loss of generality
we assume 6 > 0), a clinically meaningful difference, Z is distributed as
7V(/u*,l), where

The corresponding power is then given by

P{\N(n*, 1)| > za/2} « P {7V(/A 1) > za/2}
= P{N(0,l)>za/2 -//*}.

To achieve the desired power of (1 — /3)100%, we set

Za/2 ~ V* = -Z(3-

This leads to
(<7? + <7§)(zQ/2 + Z0)

2

n = ^ • (1.3.3)

To apply the above formula for sample size calculation, consider a double-
blind, placebo-controlled clinical trial. Suppose the objective of the study
is to compare a test drug with a control and the standard deviation for the
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treatment group is 1 (i.e., a\ — 1) and the standard deviation of the control
group is 2 (i.e., a2 = 2). Then, by choosing a — 5%, and /3 = 10%, we have

_ (a* + ff$)(za/2 + Z0}2 ( j2 + 22)(1.96 + 1.28)2

n - ^2 - ^ « 53.

Thus, a total of 106 subjects is required for achieving a 90% power for
detection of a clinically meaningful difference of 6 — I at the 5% level of
significance.

1.3.4 Probability Assessment

In practice, sample size calculation based on power analysis for detecting
a small difference in the incidence rate of rare events (e.g., 3 per 10,000)
may not be appropriate. In this case, a very large sample size is required to
observe a single event, which is not practical. In addition, small difference
in the incidence rate (e.g., 2 per 10,000 versus 3 per 10,000) may not be
of practical/clinical interest. Alternatively, it may be of interest to justify
the sample size based on a probability statement, e.g., there is a certain
assurance (say (1 — e)100%) that the mean incidence rate of the treatment
group is less than that of the control group with probability (1 — a) 100%.

Suppose there are two groups of observations, namely X i , i = 1, • • • ,n
(treatment) and yi,i = l , - - - , n (control). Assume that Xj and yi are in-
dependent and identically distributed as Bernoulli random variables with
mean p\ and p<2, i.e., -6(1,p\) and 0(1,^2)5 respectively, and that

P(x < y\n) + P(x > y\n] = 1

for large n. Then
P(x < y\ri) =p.

The hypotheses of interest are

H o : p g ( e , l ) versus H\ : p € (e, 1),

for some e > 0, where p = P(x — y\n) for some n. A test for the hypothesis
that p G (e, 1) is

<(>(x,y) =I(x < y).

We then reject the null hypothesis if 0(x, y) — I . Then, given p\ < p2, the
power is given by

Power — P(x < y)
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Therefore, for a given power 1 — /3, the sample size, n, can be estimated by
letting

(P2-P1)
/ = 2/3,

V nP2(1~P2

which gives
- ^bl(1-Pl)+P2(l-p2)]

(P2~P1)2

To illustrate the above procedure, consider a double-blind, active-control
trial. The objective of this trial is to compare a test drug with a reference
drug (active control). Suppose the event rate of the reference drug is 0.075
and the event rate of the test drug is 0.030. Then, with (3 = 10%, we have

- 1-282(0.075 x (1 - 0.075) + 0.030 x (1 - 0.030)) _
U~ (0.075 - 0.030)2 ~ '

Thus, a total of 160 subjects is needed in order to achieve a 90% power for
observing less accident rate in test drug group.

1.3.5 Reproducibility Probability

As indicated, current regulation for approval of a test drug under investi-
gation requires at least two adequate and well-controlled clinical trials be
conducted for proving substantial evidence regarding the effectiveness and
safety of the drug product. Shao and Chow (2002) investigated the prob-
ability of reproducibility of the second trial and developed an estimated
power approach. As a result, sample size calculation of the second clinical
trial can be performed based on the concept of reproducibility probabil-
ity. Suppose these are two group of observations obtained in the first trial,
namely, xu,i — 1, ...,HI (treatment) andx2i,i = 1, - - - ,^2 (control). Assume
that x\i and x^i are independent and normally distributed with means JJL\
and /J2 and common variances cr2, respectively. The hypotheses of interest
are

HO : /J,i = /J>2 versus HI : p,\ 7^2-

When a2 is known, we reject HQ at the 5% level of significance if and only
if \T\ > tn-2, where tn-i is the (1 — a/2)th percentile of the t-distribution
with n — 2 degrees of freedom, n = n\ + n2,



20 Chapter 1. Introduction

and Xi and s\ are the sample means and variances calculated based on data
from the ith group, respectively. Thus, the power of T is given by

= 1 - Tn_2(tn_2 |0) + Tn-2(-tn-2\0), (1.3.4)

where

and Tn_2(-|0) denotes the distribution function of the ^-distribution with
n — 2 degrees of freedom and the non-centrality parameter 0. Let x be
the observed data from the first trial and T(x) be the value of T based on
x. Replacing 9 in the power in (1.3.4) by its estimate T(x), the estimated
power

P = p(T(x}} = 1 - Tn-2(tn-2\T(x)) + Tn_2(-in_2|r(a;)),

is defined by Shao and Chow (2002) as a reproducibility probability for the
second trial. Based on this concept, sample size calculation for the second
trial can be obtained as

„ (T*/AT)2

n = "IE—TUT'
4ni 4ri2

where T* is the value obtained such that a desired reproducibility proba-
bility is attained and A is given by

c
where e and C reflect the population mean and variance changes in the
second trial. In other words, in the second trial it is assumed that the
population mean difference is changed from ^\ — ̂ 2 to /ui — /.i? + c and the
population variance is changed from a2 to C2cr2, where C > 0.

1.3.6 Sample Size Re-Estimation Without Unblinding

In clinical trials, it is desirable to perform a sample size re-estimation based
on clinical data accumulated up to the time point. If the re-estimated
sample size is bigger than the originally planned sample size, then it is
necessary to increase the sample size in order to achieve the desired power
at the end of the trial. On the other hand, if the re-estimated sample size is
smaller than the originally planned sample size, a sample size reduction is
justifiable. Basically, sample size re-estimation involves either unblinding or
without unblinding of the treatment codes. In practice, it is undesirable to
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perform a sample size re-estimation with unblinding of the treatment codes
as even the significance level will be adjusted for potential statistical penalty
for the unblinding. Thus, sample size re-estimation without unblinding
the treatment codes has become very attractive. Shih (1993) and Shih
and Zhao (1997) proposed some procedures without unblinding for sample
size re-estimation within interim data for double-blinded clinical trials with
binary outcomes. Detailed procedure for sample size re-estimation with
unblinding will be given in Chapter 8.

In practice, it is suggested that procedure for sample size re-estimation
be specified in the study protocol and should be performed by an external
statistician who is independent of the project team. It is also recommended
that a data monitoring committee (DMC) be considered to maintain the
scientific validity and integrity of the clinical trial when performing sample
size re-estimation at the interim stage of the trial. More details regarding
sample size re-estimation are provided in Chapter 8.

1.4 Aims and Structure of the Book

1.4.1 Aim of the Book

As indicated earlier, sample size calculation plays an important role in
clinical research. Sample size calculation is usually performed using an ap-
propriate statistical test for the hypotheses of interest to achieve a desired
power for detection of a clinically meaningful difference. The hypotheses
should be established to reflect the study objectives for clinical investigation
under the study design. In practice, however, it is not uncommon to ob-
serve discrepancies among study objectives (or hypotheses), study design,
statistical analysis (or test statistic), and sample size calculation. These
inconsistencies often result in (i) wrong test for right hypotheses, (ii) right
test for wrong hypotheses, (iii) wrong test for wrong hypotheses, or (iv)
right test for right hypotheses with insufficient power. Therefore, the aim
of this book is to provide a comprehensive and unified presentation of statis-
tical concepts and methods for sample size calculation in various situations
in clinical research. Moreover, the book will focus on the interactions be-
tween clinicians and biostatisticians that often occur during various phases
of clinical research and development. This book is also intended to give
a well-balanced summarization of current and emerging clinical issues and
recent developed statistical methodologies in the area of sample size calcu-
lation in clinical research. Although this book is written from a viewpoint
of clinical research and development, the principles and concepts presented
in this book can also be applied to a non-clinical setting.
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1.4.2 Structure of the Book

It is our goal to provide a comprehensive reference book for clinical re-
searchers, pharmaceutical scientists, clinical or medical research associates,
clinical programmers or data coordinators, and biostatisticians in the areas
of clinical research and development, regulatory agencies, and academia.
The scope of this book covers sample size calculation for studies that may
be conducted during various phases of clinical research and development.
Basically, this book consists of eighteen chapters which are outlined below.

Chapter 1 provides a brief introduction and a review of regulatory re-
quirement regarding sample size calculation in clinical research for drug
development. Also included in this chapter are statistical procedures for
sample size calculation based on precision analysis, power analysis, proba-
bility assessment, and reproducibility probability. Chapter 2 covers some
statistical considerations such as the concept of confounding and inter-
action, a one-sided test versus or a two-sided test in clinical research, a
crossover design versus a parallel design, subgroup/interim analysis, and
data transformation. Also included in this chapter are unequal treatment
allocation, adjustment for dropouts or covariates, the effect of mixed-up
treatment codes, treatment or center imbalance, multiplicity, multiple-stage
design for early stopping, and sample size calculation based on rare inci-
dence rate.

Chapter 3 focuses on sample size calculation for comparing means with
one sample, two samples, and multiple samples. Formulas are derived un-
der different hypotheses testing for equality, superiority, non-inferiority, and
equivalence with equal or unequal treatment allocation. In addition, sam-
ple size calculation based on Bayesian approach is also considered in this
chapter. Chapter 4 deals with sample size calculation for comparing pro-
portions based on large sample tests. Formulas for sample size calculation
are derived under different hypotheses testing for equality, superiority, non-
inferiority, and equivalence with equal or unequal treatment allocation. In
addition, issues in sample size calculation based on the confidence interval
of the relative risk and/or odd ratio between treatments are also examined.

Chapter 5 considers sample size calculation for binary responses based
on exact tests such as the binomial test and Fisher's exact test. Also
included in this chapter are optimal and flexible multiple-stage designs that
are commonly employed in phase II cancer trials. The emphasis of Chapter
6 is placed on tests for contingency tables such as the goodness of fit test and
test for independence. Procedures for sample size calculation are derived
under different hypotheses for testing equality, superiority, non-inferiority,
and equivalence with equal or unequal treatment allocation.

Chapter 7 provides sample size calculation for comparing time-to-event
data using Cox's proportional hazards model and weighted log-rank test.
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Formulas are derived under different hypotheses testing for equality, superi-
ority, non-inferiority, and equivalence with equal or unequal treatment allo-
cation. Chapter 8 considers the problems of sample size estimation and re-
estimation in group sequential trials with various alpha spending functions.
Also included in this chapter are the study of conditional power for as-
sessment of futility and a proposed procedure for sample size re-estimation
without unblinding.

Chapter 9 discusses statistical methods and the corresponding sample
size calculation for comparing intra-subject variabilities, intra-subject coef-
ficient of variations (CV), inter-subject variabilities, and total variabilities
under replicated crossover designs and parallel-group designs with repli-
cates. Chapter 10 summarizes sample size calculation for assessment of
population bioequivalence, individual bioequivalence, and in vitro bioe-
quivalence under replicated crossover designs as suggested in the FDA 2001
guidance (FDA, 2001).

Sample size calculation based on nonparametrics for comparing means
with one or two samples is discussed in Chapter 11. Chapter 12 includes
sample size calculations in other areas of clinical research such as dose rang-
ing study including the determination of minimum effective dose (MED)
and maximum tolerable dose (MTD), analysis of variance with repeated
measurements, quality of life assessment, bridging studies, and vaccine clin-
ical trials. In vitro bioequivalence studies are provided to illustrate the
derived formulas for sample size calculation.

For each chapter, whenever possible, real examples concerning clinical
studies of various therapeutic areas such as cardiovascular (CV), central
nervous system (CNS), anti-infective (AI), oncology, and women's health
are included to demonstrate the clinical and statistical concepts, interpre-
tations, and their relationships and interactions. Comparisons regarding
the relative merits and disadvantages of statistical methods for sample size
calculation in various therapeutic areas are discussed whenever deem ap-
propriate. In addition, if applicable, topics for future research development
are provided.





Chapter 2

Considerations Prior to
Sample Size Calculation

As indicated in the previous chapter, sample size calculation should be per-
formed using appropriate statistical methods or tests for hypotheses which
can reflect the study objectives under the study design based on the pri-
mary study endpoint of the intended trial. As a result, some information
including study design, hypotheses, mean response and the associated vari-
ability of the primary study endpoint, and the desired power at a specified
a level of significance are required when performing sample size calcula-
tion. For good statistics practice, some statistical considerations such as
stratification with respect to possible confounding/interaction factors, the
use of a one-sided test or a two-sided test, the choice of a parallel design
or a crossover design, subgroup/interim analyses and data transformation
are important for performing an accurate and reliable sample size calcula-
tion. In addition, some practical issues that are commonly encountered in
clinical trials, which may have an impact on sample size calculation, should
also be taken into consideration when performing sample size calculation.
These practical issues include unequal treatment allocation, adjustment for
dropouts or covariates, mixed-up treatment codes, treatment study center
imbalance, multiplicity, multiple-stage for early stopping, and sample size
calculation based on rare incidence rate.

In the next section, we introduce the concepts of confounding and inter-
action effects in clinical trials. Section 2.2 discusses the controversy issues
between the use of a one-sided test and a two-sided test in clinical research.
In Section 2.3, we summarize the difference in sample size calculation be-
tween a crossover design and a parallel design. The concepts of group
sequential boundaries and alpha spending function in subgroup/interim

25
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analysis in clinical trials are discussed in Section 2.4. Section 2.5 clari-
fies some issues that are commonly seen in sample size calculation based
on transformed data such as log-transformed data under a parallel design
or a crossover design. Section 2.6 provides a discussion regarding some
practical issues that have impact on sample size calculation in clinical tri-
als. These issues include unequal treatment allocation in randomization,
sample size adjustment for dropouts or covariates, the effect of mixed-up
treatment codes during the conduct of clinical trials, the loss in power for
treatment and/or center imbalance, the issue of multiplicity in multiple
primary endpoints and/or multiple comparisons, multiple-stage design for
early stopping, and sample size calculation based on rare incidence rate in
safety assessment.

2.1 Confounding and Interaction

2.1.1 Confounding

Confounding effects are defined as effects contributed by various factors
that cannot be separated by the design under study (Chow and Liu, 1998).
Confounding is an important concept in clinical research. When confound-
ing effects are observed in a clinical trial, the treatment effect cannot be
assessed because it is contaminated by other effects contributed by various
factors.

In clinical trials, there are many sources of variation that have an impact
on the primary clinical endpoints for clinical evaluation of a test drug under
investigation. If some of these variations are not identified and not properly
controlled, they can become mixed in with the treatment effect that the trial
is designed to demonstrate, in which case the treatment effect is said to be
confounded by effects due to these variations. In clinical trials, there are
many subtle, unrecognizable, and seemingly innocent confounding factors
that can cause ruinous results of clinical trials. Moses (1992) gives the
example of the devastating result in the confounder being the personal
choice of a patient. The example concerns a polio-vaccine trial that was
conducted on two million children worldwide to investigate the effect of Salk
poliomyelitis vaccine. This trial reported that the incidence rate of polio
was lower in the children whose parents refused injection than whose who
received placebo after their parent gave permission (Meier, 1989). After
an exhaustive examination of the data, it was found that susceptibility to
poliomyelitis was related to the differences between families who gave the
permission and those who did not. Therefore, it is not clear whether the
effect of the incidence rate is due to the effect of Salk poliomyelitis vaccine
or due to the difference between families giving permission.
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2.1.2 Interaction

An interaction effect between factors is defined as a joint effect with one
or more contributing factors (Chow and Liu, 1998). Interaction is also
an important concept in clinical research. The objective of a statistical
interaction investigation is to conclude whether the joint contribution of two
or more factors is the same as the sum of the contributions from each factor
when considered alone. When interactions among factors are observed, an
overall assessment on the treatment effect is not appropriate. In this case,
it is suggested that the treatment must be carefully evaluated for those
effects contributed by the factors.

In clinical research, almost all adequate and well-controlled clinical tri-
als are multicenter trials. For multicenter trials, the FDA requires that the
treatment-by-center interaction be examined to evaluate whether the treat-
ment effect is consistent across all centers. As a result, it is suggested that
statistical tests for homogeneity across centers (i.e., for detecting treatment-
by-center interaction) be provided. The significant level used to declare the
significance of a given test for a treatment-by-center interaction should be
considered in light of the sample size involved. Gail and Simon (1985)
classify the nature of interaction as either quantitative or qualitative. A
quantitative interaction between treatment and center indicates that the
treatment differences are in the same direction across centers but the mag-
nitude differs from center to center, while a qualitative interaction reveals
that substantial treatment differences occur in different directions in differ-
ent centers. More discussion regarding treatment-by-center interaction can
be found in Chow and Shao (2002).

2.1.3 Remark

In clinical trials, a stratified randomization is usually employed with respect
to some prognostic factors or covariates, which may have confounding and
interaction effects on the evaluation of the test drug under investigation.
Confounding or interaction effects may alter the conclusion of the evalua-
tion of the test drug under investigation. Thus, a stratified randomization
is desirable if the presence of the confounding and/or interaction effects
of some factors is doubtful. In practice, although sample size calculation
according to some stratification factors can be similarly performed within
each combination of the stratification factors, it is not desirable to have
too many stratification factors. Therefore, it is suggested that the possible
confounding and/or interaction effects of the stratification factors should
be carefully evaluated before a sample size calculation is performed and a
stratified randomization is carried out.
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2.2 One-Sided Test Versus Two-Sided Test

In clinical research, it has been a long discussion regarding whether a one-
sided test or a two-sided test should be used for clinical evaluation of a test
drug under investigation. Sample size calculations based on a one-sided
test and a two-sided test are different at a fixed a level of significance. As
it can be seen from (1.3.3), sample size for comparing the two means can
be obtained as

(ffi + (T%)(za/2 + zp)2

n= - P - '

When o\ = a\ = <r2, the above formula reduces to

n =

If 6 = ccr, then the sample size formula can be rewritten as

Table 2.2.1 provides a comparison for sample sizes obtained based on a
one-sided test or a two-sided test at the a level of significance. The results
indicate that sample size may be reduced by about 21% when switching
from a two-sided test to a one-sided test for testing at the 5% level of
significance with an 80% power for detection of a difference of 0.5 standard
deviation.

The pharmaceutical industry prefers a one-sided test for demonstration
of clinical superiority based on the argument that they will not run a study
if the test drug would be worse. In practice, however, many drug prod-
ucts such as drug products in central nervous system may show a superior
placebo effect as compared to the drug effect. This certainly argues against
the use of a one-sided test. Besides, a one sided test allows more bad drug
products to be approved because of chances as compared to a two-sided
test.

As indicated earlier, the FDA requires that at least two adequate and
well-controlled clinical studies be conducted to provide substantial evidence
regarding the effectiveness and safety of a test drug under investigation.
For each of the two adequate and well-controlled clinical trials, suppose the
test drug is evaluated at the 5% level of significance. Table 2.2.2 provides
a summary of comparison between one-sided test and two-sided test in
clinical research. For the one-sided test procedure, the false positive rate is
one out of 400 trials (i.e., 0.25%) for the two trials, while the false positive
rate is one out of 1.600 trials (i.e., 0.0625%) for two trials when applying a
two-sided test.
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Table 2.2.1: Sample Sizes Based on One-Sided Test and
Two-Sided Test At a-level of Significance

One-sided Test
a

0.05

0.01

<5*
0.25(7
0.50(7
1.00(7

0.25(7
0.50(7
1.00(7

80%
198
50
13
322
81
21

90%
275
69
18
417
105
27

Two-sided Test
80%
252
63
16
374
94
24

90%
337
85
22
477
120
30

Some researchers from the academia and the pharmaceutical industry
consider this false positive rate is acceptable and the evidence provided by
the two clinical trials using the one-sided test procedure is rather substan-
tial. Hence, the one-sided test procedure should be recommended. How-
ever, in practice a two-sided test may be preferred because placebo effect
may be substantial in many drug products such as drug products regarding
diseases in the central nervous system.

2.2.1 Remark

Dubey (1991) indicated that the FDA prefers a two-sided test over a one-
sided test procedure in clinical research and development of drug products.
In situations where (i) there is truly only concern with outcomes in one
tail, and (ii) it is completely inconceivable that results could go in the
opposite direction, one-sided test procedure may be appropriate (Dubey,
1991). Dubey (1991) provided situations where one-sided test procedure

Table 2.2.2: Comparison Between One-Sided Test and
Two-Sided Test At a-level of Significance

Characteristic One-sided Test Two-sided Test
Hypotheses

One Trial
Two Trials

Non-inferiority
Superiority

1/20
1/400

Equality
Equivalence

1/40
1/1600
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may be justified. These situations include (i) toxicity studies, (ii) safety
evaluation, (iii) the analysis of occurrences of adverse drug reaction data,
(iv) risk evaluation, and (v) laboratory data.

2.3 Crossover Design Versus Parallel Design

As indicated earlier, an adequate and well-controlled clinical trial requires
that a valid study design be employed for a valid assessment of the effect
of the test drug under investigation. As indicated in Chow and Liu (1998),
commonly used study designs in clinical research include parallel design,
crossover design, enrichment design, titration design, or a combination of
these designs. Among these designs, crossover and parallel designs are
probably the two most commonly employed study designs.

2.3.1 Inter-Subject and Intra-Subject Variabilities

Chow and Liu (1998) suggested that relative merits and disadvantages of
candidate designs should be carefully evaluated before an appropriate de-
sign is chosen for the intended trial. The clarification of the intra-subject
and inter-subject variabilities is essential for sample size calculation in clin-
ical research when a crossover design or a parallel design is employed.

Intra-subject variability is the variability which could be observed by
repeating experiments on the same subject under the same experiment
condition. The source of intra-subject variability could be multifold. One
important source is biological variability. Exactly the same results may not
be obtained even if they are from the same subject under the same exper-
iment condition. Another important source is measurement or calculation
error. For example, in a bioequivalence study with healthy subjects, it
could be (i) the error when measuring the blood or plasma concentration-
time curve, (ii) the error when calculating AUC (area under the curve),
and/or (iii) the error of rounding after log-transformation. Intra-subject
variability could be eliminated if we could repeat the experiment infinitely
many times (in practice, this just means a large number of times) on the
same subject under the same experiment condition and then take the aver-
age. The reason is that intra-subject variability tends to cancel each other
on average in a large scale. If we repeat the experiment on different subjects
infinitely many times, it is possible that we may still see that the averages
of the responses from different subjects are different from each other even
if the experiments are carried out under the exactly the same conditions.
Then, what causes this difference or variation? It is not due to intra-subject
variability, which has been eliminated by averaging infinitely repeated ex-
periments; it is not due to experiment conditions, which are exactly the
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same for different subjects. Therefore, this difference or variation can only
be due to the unexplained difference between the two subjects.

It should be pointed out that sometimes people may call the varia-
tion observed from different subjects under the same experiment condition
inter-subject variability, which is different from the inter-subject variabil-
ity defined here. The reason is that the variability observed from different
subjects under the same experiment condition could be due to unexplained
difference among subjects (pure inter-subject variability); it also could be
due to the biological variability, or measurement error associated with dif-
ferent experiment on different subject (intra-subject variability). Therefore,
it is clear that the observed variability from different subjects incorporate
two components. They are, namely, pure inter-subject variability and intra-
subject variability. We refer to it as the total inter-subject variability. For
simplicity, it is also called total variability, which is the variability one would
observe from a parallel design.

In practice, no experiment can be carried out infinitely many times. It
is also not always true the experiment can be repeatedly carried out on
the same subject under the same experiment condition. But, we can still
assess these two variability components (intra- and inter-) under certain
statistical models, e.g., a mixed effects model.

2.3.2 Crossover Design

A crossover design is a modified randomized block design in which each
block receives more than one treatment at different dosing periods. In a
crossover design, subjects are randomly assigned to receive a sequence of
treatments, which contains all the treatments in the study. For example,
for a standard two-sequence, two-period 2 x 2 crossover design, subjects
are randomly assigned to receive one of the two sequences of treatments
(say, RT and TR), where T and R represent the test drug and the reference
drug, respectively. For subjects who are randomly assigned to the sequence
of RT, they receive the reference drug first and then crossover to receive
the test drug after a sufficient length of washout. The major advantage
of a crossover design is that it allows a within subject (or intra-subject)
comparison between treatments (each subject serves as its own control)
by removing the between subject (or inter-subject) variability from the
comparison. Let HT and HR be the mean of the responses of the study
endpoint of interest. Also, let cr| and d^ be the inter-subject variance and
intra-subject variance, respectively. Define 6 = (HT — I^R)/^R and assume
that the equivalence limit is 6 = 0.2/Zfl. Then, under a two-sequence, two-
period crossover design, the formula for sample size calculation is given by
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(see, also Chow and Wang, 2001)

CV (£Q>2n-

where CV =

2.3.3 Parallel Design

A parallel design is a complete randomized design in which each subject re-
ceives one and only one treatment in a random fashion. The parallel design
does not provide independent estimates for the intra-subject variability for
each treatment. As a result, the assessment of treatment effect is made
based on the total variability, which include the inter-subject variability
and the intra-subject variability.

Under a parallel design, assuming that the equivalence limit 6 = 0.2^iR,
the following formula is useful for sample size calculation (Chow and Wang,
2001):

2CV (ta,2n-2 + £/3/2,2n-2)
71 ~ (0-2 - \9\y

where CV — O-/HR and cr2 — cr| + a2.

2.3.4 Remark

In summary, in a parallel design, the comparison is made based on the inter-
subject variation, while the comparison is made based on the intra-subject
variation in a crossover design. As a result, sample size calculation under
a parallel design or a crossover design is similar and yet different. Note
that the above formulas for sample size calculation are obtained based on
raw data. Sample size formulas based on log-transformation data under a
parallel design or a crossover design can be similarly obtained (Chow and
Wang, 2001). More discussion regarding data transformation such as a
log-transformation is given in Section 2.5.

2.4 Subgroup/Interim Analyses

In clinical research, subgroup analyses are commonly performed in clini-
cal trials. Subgroup analyses may be performed with respect to subject
prognostic or confounding factors such as demographics or subject charac-
teristics at baseline. The purpose of this type of subgroup analysis is to
isolate the variability due to the prognostic or confounding factors for an
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unbiased and reliable assessment of the efficacy and safety of the test drug
under investigation. In addition, many clinical trial protocols may call for
an interim analysis or a number of interim analyses during the conduct of
the trials for the purpose of establishing early efficacy and/or safety moni-
toring. The rationale for interim analyses of accumulating data in clinical
trials have been well established in the literature. See, for example, Ar-
mitage, et al. (1969), Haybittle (1971), Peto et al. (1976), Pocock (1977),
O'Brien and Fleming (1979), Lan and DeMets (1983), PMA (1993), and
DeMets and Lan (1994).

2.4.1 Group Sequential Boundaries

For interim analyses in clinical trials, it is suggested that the number of
planned interim analyses should be specified in the study protocol. Let N
be the total planned sample size with equal allocation to the two treat-
ments. Suppose that K interim analyses is planned with equal increment
of accumulating data. Then we can divide the duration of the clinical trial
into K intervals. Within each stage, the data of n = N/K patients are
accumulated. At the end of each interval, an interim analysis can be per-
formed using the Z-statistic, denoted by Zi, with the data accumulated
up to that point. Two decisions will be made based on the result of each
interim analysis. First, the trial will continue if

\Zi\<Zi, i = !,...,#-1, (2.4.1)

where the Zi are some critical values which are known as the group sequential
boundaries. We fail to reject the null hypothesis if

| Zi |< z^ for all i = 1,..., K. (2.4.2)

Note that we may terminate the trial if the null hypothesis is rejected at
any of the K interim analyses (\ Zi \> Zi, i = 1, ...,K). For example, at
the end of the first interval, an interim analysis is carried out with data
from n subjects. If we fail to reject the null hypothesis, we continue the
trial to the second planned interim analysis. Otherwise, we reject the null
hypothesis and we may stop the trial. The trial may be terminated at the
final analysis if we fail to reject the null hypothesis at the final analysis.
Then we declare that the data from the trial provide sufficient evidence to
doubt the validity of the null hypothesis. Otherwise, the null hypothesis is
rejected and we conclude that there is statistically significant difference in
change from baseline between the test drug and the control.

In contrast to the fixed sample where only one final analysis is per-
formed, K analyses are carried out for the K-stage group sequential proce-
dure. Suppose that the nominal significance level for each of the K interim
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analyses is still 5%. Then, because of repeated testing based on the ac-
cumulated data, the overall significance level is inflated. In other words,
the probability of declaring at least one significance result increases due to
K interim analyses. Various methods have been proposed to maintain the
overall significance level at the pre-specified nominal level. One of the early
methods was proposed by Haybittle (1971) and Peto et al. (1976). They
proposed to use 3.0 as group sequential boundaries for all interim analyses
except for the final analysis for which they suggested 1.96. In other words,

3.0, if i= !,...,#"- 1,
1.96, i f i = K.

Therefore, their method can be summarized as follows:

Step 1: At each of the K interim analyses, compute Zj, i = 1, ..., K — 1.
Step 2: If the absolute value of Zi acrosses 3.0, then reject the

null hypothesis and recommend a possible early
termination of the trial; otherwise continue the trial to
the next planned interim analysis and repeat steps 1
and 2.

Step 3: For the final analysis, use 1.96 for the boundary. Trial
stops here regardless the null hypothesis is rejected.

The Haybittle and Peto's method is very simple. However, it is a pro-
cedure with ad hoc boundaries which are independent of the number of
planned interim analyses and stage of interim analyses. Pocock (1977)
proposed different group sequential boundaries which depends upon the
number of planned interim analyses. However, his boundaries are constant
at each stage of interim analyses. Since limited information is included in
the early stages of interim analyses, O'Brien and Fleming (1979) suggested
to pose conservative boundaries for interim analyses scheduled to be carried
out during early phase of the trial. Their boundaries not only depend upon
the number of interim analyses but also is a function of stages of interim
analysis. As a result, the O'Brien-Fleming boundaries can be calculated as
follows:

Zik = ̂ R^ l<i<k<K, (2.4.3)
i

where c^ is the critical value for a total of k planned interim analyses. As
an example, suppose that 5 planned interim analyses are scheduled. Then
05 = 2.04 and boundaries for each stage of these 5 interim analyses are
given as

2.Q4\/5_
"i 5 —
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Thus, O'Brien-Fleming boundary for the first interim analysis is equal
to (2.04)(v/5) = 4.561. The O'Brien-Fleming boundaries for the other 4
interim analyses can be similarly computed as 3.225, 2.633, 2.280, and
2.040, respectively. The O'Brien-Fleming boundaries are very conservative
so that the early trial results must be extreme for any prudent and jus-
tified decision-making in recommendation of a possible early termination
when very limited information is available. On the other hand, for the
late phase of the trial when the accumulated information approaches the
required maximum information, their boundaries also become quite close
to the critical value when no interim analysis had been planned. As a re-
sult, the O'Brien-Fleming method does not require a significant increase
in the sample size for what has already planned. Therefore, the O'Brien-
Fleming group sequential boundaries have become one of the most popular
procedures for the planned interim analyses of clinical trials.

2.4.2 Alpha Spending Function

The idea of the alpha spending function proposed by Lan and DeMets
(1983) is to spend (i.e., distribute) the total probability of false positive
risk as a continuous function of the information time. The implementation
of the alpha spending function requires the selection and specification of
the spending function in advance in the protocol. One cannot change and
choose another spending function in the middle of trial. Geller (1994) sug-
gested that the spending function should be convex and have the property
that the same value of a test statistic is more compelling as the sample
sizes increase. Since its flexibility and no requirement for total information
and equal increment of information, there is a potential to abuse the alpha
spending function by increasing the frequency of interim analyses as the re-
sults approach to the boundary. However, DeMets and Lan (1994) reported
that alteration of the frequency of interim analyses has very little impact
on the overall significance level if the O'Brien-Fleming-type or Pocock-type
continuous spending function is used.

Pawitan and Hallstrom (1990) studied the alpha spending function with
the use of the permutation test. The permutation test is conceptually sim-
ple and it provides an exact test for small sample sizes. In addition, it
is valid for complicated stratified analysis in which the exact sampling
distribution is in general unknown and large-sample approximation may
not be adequate. Consider the one-sided alternative. For the kth in-
terim analyses, under the assumption of no treatment effect, the null joint
permutation distribution of test statistics (Zi,..., ZK) can be obtained by
random permutation of treatment assignments on the actual data. Let
(Zib,..., Zftb),b = 1,...,B, be the statistics computed from B treatment
assignments and B be the total number of possible permutations. Given
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QL(SI), a(s2] — a(si),..., a(sfc) - CK(SK-I), the probabilities of type I error
allowed to spend at successive interim analyses, the one-sided boundaries
Z\,...ZK can be determined by

and

# of (Z\ > z\ or Z| > z-2,..., orZ| > zk} _ , , / ,
- - Q(Sfc) - 0!(Sfc-l),

/c — 1,...,.K". If £? is very large, then the above method can be executed
with a random sample with replacement of size B. The a spending function
for an overall significance level of 2.5% for one-sided alternative is given by

T|S, if s < 1,
a, if s — 1.

In the interest of controlling the overall type I error rate at the a level of
significance, sample size is necessarily adjusted according to the a spending
function to account for the planned interim analyses. In some cases, sample
size re-estimation without unblinding may be performed according to the
procedure described in Section 1.3 of Chapter 1. More details can be found
in Chapter 8.

2.5 Data Transformation

In clinical research, data transformation on clinical response of the primary
study eridpoint may be necessarily performed before statistical analysis
for a more accurate and reliable assessment of the treatment effect. For
example, for bioavailability and bioequivalence studies with healthy human
subjects, the FDA requires that a log-transformation be performed before
data analysis. Two drug products are claimed bioequivalent in terms of
drug absorption if the 90% confidence interval of the ratio of means of the
primary pharmacokinetic (PK) parameters, such as area under the blood
or plasma concentration-time curve (AUC) and maximum concentration
(Cmax), is entirely within the bioequivalence limits of (80%,125%). Let //T
and HR be the population means of the test drug and the reference drug,
respectively. Also, let X and Y be the PK responses for the test drug and
the reference drug. After log-transformation, we assume that logX and
logF follow normal distributions with means n*x and Hy and variance a2.
Then

and ///? - E(Y) =
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which implies

log(^)
P-R

Under both the crossover and parallel design, an exact (1 — a) 100% confi-
dence interval for ^JL*X — yuy can be obtained based on the log transformed
data. Hence, an exact (1 — a) 100% confidence interval for HT/HR can be
obtained after the back transformation.

Chow and Wang (2001) provided sample size formulas under a parallel
design or a crossover design with and without log-transformation. These
formulas are different but very similar. In practice, scientists often con-
fuse them with one another. The following discussion may be helpful for
clarification.

We note that the sample size derivation is based on normality assump-
tion for the raw data and lognormality assumption for the transformed
data. Thus, it is of interest to study the distribution of logX when X is
normally distributed with mean ^ and variance a2. Note that

= — = CV'

If CV is sufficiently small, (X — ju)//i, is close to 0. As a result, by Taylor's
expansion,

X-n

Then,

log* « log/z + ¥—£•
H

This indicates that when CV is small, log X is still approximately normally
distributed, even if X is from a normal population. Therefore, the proce-
dure based on log-transformed data is robust in some sense. In addition,
the CV observed from the raw data is very similar to the variance obtained
from the log-transformed data.

Traditionally, for the example regarding bioavailability and bioequiva-
lence with raw data, BE can be established if the 90% confidence interval
for HT — V>R is entirely within the interval of (—0.2/^,0.I^R) (Chow and
Liu, 1992). This is the reason why 0.2 appears in the formula for raw data.
However, both the 1992 FDA and the 2000 FDA guidances recommended
that a log-transformation be performed before bioequivalence assessment is
made. For log-transformed data, the BE can be established if the 90% con-
fidence interval for ^IT/^R is entirely located in the interval (80%,125%).
That is why log 1.25 appears in the formula for log-transformed data. It
should be noted that log 1.25 = -log0.8 = 0.2231. In other words, the
BE limit for the raw data is symmetric about 0 (i.e., ±0.2//#), while the
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Table 2.5.1: Posterior Power Evaluation Under a Crossover Design

Data Type Power

/ \
Raw Data 1 - 2$ ( cy °.'\_ ^_ - ta,ni+Tl2-2 1

Log-transformed Data 1 - 2$ ( °;21
23 — ta,ni+r i2_2

BE limit for the log-transformed data is also symmetric about 0 after log
transformation.

2.5.1 Remark

For the crossover design, since each subject serves as its own control, the
inter-subject variation is removed from comparison. As a result, the formula
for sample size calculation derived under a crossover design only involves the
intra-subject variability. On the other hand, for the parallel design, formula
for sample size calculation under a parallel design includes both the inter-
and intra-subject variabilities. In practice, it is easy to get confused with
the sample size calculation and/or evaluation of posterior power based on
either raw data or log-transformed data under either a crossover design or
a parallel design (Chow and Wang, 2001). As an example, posterior powers
based on raw data and log-transformed data under a crossover design when
the true mean difference is 0 are given in Table 2.5.1.

2.6 Practical Issues

2.6.1 Unequal Treatment Allocation

In a parallel design or a crossover design comparing two or more than
two treatments, sample sizes in each treatment group (for parallel design)
or in each sequence of treatments (for crossover design) may not be the
same. For example, when conducting a placebo-control clinical trial with
very ill patients or patients with severe or life-threatening diseases, it may
not be ethical to put too many patients in the placebo arm. In this case,
the investigator may prefer to put fewer patients in the placebo (if the
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placebo arm is considered necessary to demonstrate the effectiveness and
safety of the drug under investigation) . A typical ratio of patient allocation
for situations of this kind is 1:2, i.e., each patient will have a one-third
chance to be assigned to the placebo group and two-third chance to receive
the active drug. For different ratios of patient allocation, the sample size
formulas discussed can be directly applied with appropriate modification of
the corresponding degrees of freedom in the formulas.

When there is unequal treatment allocation, say K to 1 ratio, sample
size for comparing two means can be obtained as

n =
62

When K = 1, the above formula reduces to (1.3.3). When cr2 = cr2 = cr2,
we have

n =
Kd2

Note that unequal treatment allocation will have an impact on random-
ization in clinical trials, especially in multicenter trials. To maintain the
integrity of blinding of an intended trial, a blocking size of 2 or 4 in ran-
domization is usually employed. A blocking size of 2 guarantees that one of
the subjects in the block will be randomly assigned to the treatment group
and the other one will be randomly assigned to the control group. In a
multicenter trial comparing two treatments, if we consider a 2 to 1 alloca-
tion, the size of each block has to be a multiple of 3, i.e., 3, 6, or 9. In the
treatment of having a minimum of two blocks in each center, each center
is required to enroll a minimum of 6 subjects. As a result, this may have
an impact on the selection of the number of centers. As indicated in Chow
and Liu (1998), as a rule of thumb, it is not desirable to have the number
of subjects in each center less than the number of centers. As a result, it
is suggested that the use of a K to 1 treatment allocation in multicenter
trials should take into consideration of blocking size in randomization and
the number of centers selected.

2.6.2 Adjustment for Dropouts or Covariates

At the planning stage of a clinical study, sample size calculation provides
the number of evaluable subjects required for achieving a desired statistical
assurance (e.g., an 80% power). In practice, we may have to enroll more
subjects to account for potential dropouts. For example, if the sample size
required for an intended clinical trial is n and the potential dropout rate is
p, then we need to enroll n/(\ — p) subjects in order to obtain n evaluable
subjects at the completion of the trial. It should also be noted that the
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investigator may have to screening more patients in order to obtain n/(\—p]
qualified subjects at the entry of the study based on inclusion/exclusion
criteria of the trial.

Fleiss (1986) pointed out that a required sample size may be reduced if
the response variable can be described by a covariate. Let n be the required
sample size per group when the design does not call for the experimental
control of a prognostic factor. Also, let n* be the required sample size for
the study with the factor controlled. The relative efficiency (RE] between
the two designs is defined as

As indicated by Fleiss (1986), if the correlation between the prognostic
factor (covariate) and the response variable is r, then RE can be expressed
as

Hence, we have
n* =n(l-r2).

As a result, the required sample size per group can be reduced if the corre-
lation exists. For example, a correlation of r = 0.32 could result in a 10%
reduction in the sample size.

2.6.3 Mixed-Up Randomization Schedules

Randomization plays an important role in the conduct of clinical trials.
Randomization not only generates comparable groups of patients who con-
stitute representative samples from the intended patient population, but
also enables valid statistical tests for clinical evaluation of the study drug.
Randomization in clinical trials involves random recruitment of the pa-
tients from the targeted patient population and random assignment of pa-
tients to the treatments. Under randomization, statistical inference can
be drawn under some probability distribution assumption of the intended
patient population. The probability distribution assumption depends on
the method of randomization under a randomization model. A study with-
out randomization results in the violation of the probability distribution
assumption and consequently no accurate and reliable statistical inference
on the evaluation of the safety and efficacy of the study drug can be drawn.

A problem commonly encountered during the conduct of a clinical trial
is that a proportion of treatment codes are mixed-up in randomization
schedules. Mixing up treatment codes can distort the statistical analysis
based on the population or randomization model. Chow and Shao (2002)
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quantitatively studied the effect of mixed-up treatment codes on the anal-
ysis based on the intention-to-treat (ITT) population, which are described
below.

Consider a two-group parallel design for comparing a test drug and a
control (placebo), where n\ patients are randomly assigned to the treat-
ment group and n<2 patients are randomly assigned to the control group.
When randomization is properly applied, the population model holds and
responses from patients are normally distributed. Consider first the sim-
plest case where two patient populations (treatment and control) have the
same variance <r2 and a1 is known. Let Hi and ^2 be the population means
for the treatment and the control, respectively. The null hypothesis that
Mi — M2 (i-e., there is no treatment effect) is rejected at the a level of
significance if

1^1 -^2! -^ ^ o « i \> za/2, (2.6.1)

where x\ is the sample mean of responses from patients in the treatment
group, x-2 is the sample mean of responses from patients in the control
group, and za/2 is the upper (a/2)th percentile of the standard normal
distribution. Intuitively, mixing up treatment codes does not affect the
significance level of the test.

The power of the test, i.e., the probability of correctly detecting a treat-
ment difference when /i ^ 2 > ls

p(0) = P I _ > za/2 \=*(0- za/2) + $(-0 -

where $ is the standard normal distribution function and

/, Mi - M2 (2.6.2)

This follows from the fact that under the randomization model, x\—x^ has
the normal distribution with mean Mi ~ M2 and variance <r2 f ^- + ^- j .

Suppose that there are ra patients whose treatment codes are randomly
mixed-up. A straightforward calculation shows that x\—x-2 is still normally
distributed with variance a2 ( ^- + ^- j , but the mean of x\ — x% is equal
to

It turns out that the power for the test defined above is

p(0m) = $(0m ~ za/2) + $(-0m - za/2)
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where
f / I 1 \ 1 , ; , — / ; „

(2.6.3)

Note that Om = 9 if ra = 0, i.e., there is no mix-up.

The effect of mixed-up treatment codes can be measured by comparing
p(9) with p(0m}. Suppose that n\ = n^. Then p(9m] depends on m/ni, the
proportion of mixed-up treatment codes. For example, suppose that when
there is no mix-up, p(ff) = 80%, which gives that \9\ = 2.81. When 5% of
treatment codes are mixed-up, i.e., m/n\ — 5%,p(0m) = 70.2%. When 10%
treatment codes are mixed-up, p(9m) — 61.4%. Hence, a small proportion of
mixed-up treatment codes may seriously affect the probability of detecting
treatment effect when such an effect exists. In this simple case we may plan
ahead to ensure a desired power when the maximum proportion of mixed-up
treatment codes is known. Assume that the maximum proportion of mixed-
up treatment codes is p and that the original sample size is n\ = n^ = UQ.
Then

.
cry 2

Thus, a new sample size nnew = no / ( I — 2p)'2 will maintain the desired
power when the proportion of mixed-up treatment codes is no larger than
p. For example, if p = 5%, then nnew = 1.23no, i.e., a 23% increase of the
sample size will offset a 5% mix-up in randomization schedules.

The effect of mixed-up treatment codes is higher when the study design
becomes more complicated. Consider the two-group parallel design with
an unknown a2. The test statistic is necessarily modified by replacing za/2

and a2 by ta /2 ; n i + n a_2 and

.2 (m - 1) si + (n2 -a = ,
ni + n2 - 2

where s2 is is the sample variance based on responses from patients in the
treatment group, s2 is the sample variance based on responses from patients
in the control group, and £a /2;m+n2-2 'ls the upper (a/2)th percentile of the
t-distribution with n\ +n<2 — 1 degrees of freedom. When randomization is
properly applied without mixed-up, the two-sample t-test has the a level
of significance and the power is given by

1 — ̂ ni+n2-2(£a/2;ru+n2-2|0) + ^ni +n2-2 (~ ̂ a/2;m+n2-2 FJ)

where 9 is defined by (2.6.2) and Tni+n2-2(-\9] is the non-central t-distri-
bution function with n\ + n2 — 2 degrees of freedom and the non-centrality
parameter 9. When there are m patients with mixed-up treatment codes
and //] ^ /^2, the effect on the distribution of x\ — £2 is the same as that in
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the case of known cr2. In addition, the distribution of cr2 is also changed.
A direct calculation shows that the expectation of cr2 is

£(<T 2 )=Cr 2+ 2 ( / / 1 -^ ) 2"v m + n2 - 2

Hence, the actual power of the two-sample t-test is less than

where Om is given by (2.6.3).

2.6.4 Treatment or Center Imbalance

In multicenter clinical trials, sample size calculation is usually performed
under the assumption that there are equal number of subjects in each cen-
ter. In practice, however, we may end up with an imbalance in sample
sizes across centers. It is a concern (i) what the impact is of this imbalance
on the power of the test and (ii) whether sample size calculation should
be performed in a way to account for this imbalance. In this section, we
examine this issue by studying the power with sample size imbalance across
centers.

For a multicenter trial, the following model is usually considered:

where i = 1,2 (treatment), j — 1,..., J (center), k = 1, ...,n^-, Tj is the ith
treatment effect, Cj is the effect due to the jth center, (TC)ij is the effect
due to the interaction between the ith treatment in the jth center, and Cijk
are random error which are normally distributed with mean 0 and variance
a2. Under the above model, a test statistic for

is given by

r'^y^.-fc.)
j=i

with E(T*) = Tl-T2 and

If we assume that n\j = n^j — rij for all j = 1, ..., J, then

3=1
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In this case, the power of the test is given by

Power = 1 — $ I za/2 —

When rij — n for all j,

and the power of the test becomes

Power — 1 — <£ I za/2 —

As it can be seen that

6
a/2

To achieve the same power, the only choice is to increase the sample size if
we assume that the variance remains the same. In this situation, the total
sample size TV = Ei=i nj should satisfy

The difficulty is that r i j , j = 1,..., J, are not fixed and we are unable to
predict how many subjects will be in each center at the end of the trial
although we may start with the same number of subjects in each center. The
loss in power due to treatment and/or center imbalance may be substantial
in practice.

2.6.5 Multiplicity

In many clinical trials, multiple comparisons may be performed. In the
interest of controlling the overall type I error rate at the a level, an ad-
justment for multiple comparisons such as the Bonferroni adjustment is
necessary. The formulas for sample size calculation can still be applied by
simply replacing the a level with an adjusted a level. In practice, it may
be too conservative to adjust the a level when there are too many primary
clinical endpoints or there are too many comparisons to be made. As a rule
of thumb, Biswas. Chan and Ghosh (2000) suggested that a multiplicity
adjustment to the significance level be made when at least one significant
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result (e.g., one of several primary clinical endpoints or several pairwise
comparison) is required to draw conclusion. On the other hand, a mul-
tiplicity adjustment is not needed when (i) all results are required to be
significant in order to draw conclusion or (ii) the testing problem is closed.
A test procedure is said to be closed if the rejection region of a particular
univariate null hypothesis at a given significance a-level implies the rejec-
tion of all higher dimensional null hypotheses containing the univariate null
hypothesis at the same significance a-level (Marcus, Peritz, and Gabriel,
1976). When a multiplicity adjustment is required, it is recommended that
either the method of Bonferroni or the procedures described in Hochberg
and Tamhane (1987) be used.

2.6.6 Multiple-Stage Design for Early Stopping

In phase II cancer trials, it is undesirable to stop a study early when the
treatment appears to be effective but desirable to terminate the trial when
the treatment seems to be ineffective. For this purpose, a multiple-stage
design is often employed to determine a test drug is promising to warrant
further testing (Simon, 1989). The concept of a multiple-stage design is to
permit early stopping when a moderately long sequence of initial failures
occurs. For example, in Simon's two-stage optimal design, n\ subjects are
treated and the trial terminates if all n\ are treatment failures. If there are
one or more successes in stage 1, then stage 2 is implemented by including
the other 712 subjects. A decision is them made based on the response rate
of the ni+n2 subjects. The drawback of Simon's design is that it does
not allow early termination if there is a long run of failures at the start.
To overcome this disadvantage, Ensign et al. (1994) proposed an optimal
three-stage design which modifies the Simon's two-stage design. Let po
be the response rate that is not of interest for conducting further studies
and pi be the response rate of definite interest (pi > po). The optimal
three-stage design is implemented by testing the following hypotheses:

HQ '. p < po versus Ha : p > p\.

Rejection of HQ indicates that further study of the test drug should be
carried out. At stage 1, n\ subjects are treated. We would reject Ha (i.e.,
the test drug is not promising) and stop the trial if there is no response.
If there are one or more responses, then proceed to stage 2 by including
additional n^ subjects. We would then reject HI and stop the trial if the
total number of responses is less than a prespecified number of r-2; otherwise
continue to stage 3. At stage 3, n^ more subjects are treated. We reject
Ha if the total number of responses is less than a prespecified number of
TS. In this case, we conclude the test treatment is ineffective. Based on
the three-stage design described above, Ensign et al. (1994) considered the
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following to determine the sample size. For each value of n2 satisfying

( l -pi)n i </3,

where

compute the values of r2 , n<2 , r% , and HS that minimize the null expected
sample size EN(po) subject to the error constraints a and /?, where

EN(p) = m + n2{l - ft (p)} + n3{l - A(p) - &(p)},

and /3j are the probability of making type II error evaluated stage i. Ensign
et al. (1994) use the value of

as the type II error rate in the optimization along with type I error

a = P(reject HQ\PQ)

to obtain r2,n2,r3, and 713. Repeating this, n\ can be chosen to minimize
the overall EN(p0).

2.6.7 Rare Incidence Rate

In most clinical trials, although the primary objectives are usually for eval-
uation of the effectiveness and safety of the test drug under investigation,
the assessment of drug safety has not received the same level of attention as
the assessment of efficacy. Sample size calculations are usually performed
based on a pre-study power analysis based on the primary efficacy variable.
If sample size is determined based on the primary safety variable such as
adverse event rate, a large sample size may be required especially when
the incidence rate is extremely rare. For example, if the incidence rate is
one per 10,000, then we will need to include 10,000 subjects in order to
observe a single incidence. In this case, we may justify a selected sample
size based on the concept of probability statement as described in Section
1.3.5. O'Neill (1988) indicated that the magnitude of rates that can be
feasibly studied in most clinical trials is about 0.01 and higher. However,
observational cohort studies usually can assess rates on the order of 0.001
and higher. O'Neill (1988) also indicated that it is informative to examine
the sample sizes that would be needed to estimate a rate or to detect or
estimate differences of specified amounts between rates for two different
treatment groups.
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Comparing Means

In clinical research, clinical trials are usually conducted for evaluation of
the efficacy and safety of a test drug as compared to a placebo control or an
active control agent (e.g., a standard therapy) in terms of mean responses
of some primary study endpoints. The objectives of the intended clinical
trials usually include (i) the evaluation of the effect, (ii) the demonstra-
tion of therapeutic equivalence/non-inferiority, and (iii) the establishment
of superiority. For evaluation of the effect within a given treatment, the
null hypothesis of interest is to test whether there is a significant difference
in mean response between pre- and post-treatment or mean change from
baseline to endpoint. We refer to this testing problem as a one-sample
problem. For establishment of the efficacy and safety of the test drug, a
typical approach is to test whether there is a difference between the test
drug and the placebo control and then evaluate the chance of correctly de-
tecting a clinically meaningful difference if such a difference truly exists.
Thus, it is of interest to first test the null hypothesis of equality and then
evaluate the power under the alternative hypothesis to determine whether
the evidence is substantial for regulatory approval. For demonstration of
therapeutic equivalence/non-inferiority and/or superiority as compared to
an active control or standard therapy, it is of interest to test hypotheses for
equivalence/non-inferiority and/or superiority as described in Chapter 1.
In this chapter, under a valid design (e.g., a parallel design or a crossover
design), methods for sample size calculation are provided to achieve a de-
sired power of statistical tests for appropriate hypotheses.

In Section 3.1, testing in one-sample problems is considered. Sections
3.2 and 3.3 summarize procedures for sample size calculation in two-sample
problems under a parallel design and a crossover design, respectively. Sec-
tions 3.4 and 3.5 present procedures in multiple-sample problems under
a parallel design (one-way analysis of variance) and a crossover design

47



48 Chapter 3. Comparing Means

(Williams design), respectively. Section 3.6 discusses some practical issues
regarding sample size calculation for comparing means in clinical research,
including sample size reduction when switching from a two-sided test to
a one-sided test or from a parallel design to a crossover design, sensitiv-
ity analysis with respect to change in variability, and a brief discussion
regarding Bayesian approach.

3.1 One-Sample Design

Let Xi be the response from the zth sampled subject, i — 1, ...,n. In clinical
research, x^ could be the difference between matched pairs such as the
pre-treatment and post-treatment responses or changes from baseline to
endpoint within a treatment group. It is assumed that x^s are independent
and identically distributed (i.i.d.) normal random variables with mean 0
and variance a2. Let

n 1 n

x = - ^ X i and s2 = —— V(xz-;r)2 (3.1.1)
n ^—' n — I ^—'

i=l i=l

be the sample mean and sample variance of Xj 's , respectively. Also, let
e = (j, — P.Q be the difference between the true mean response of a test
drug (p.) and a reference value (/J,Q). Without loss of generality, consider
e > 0 (e < 0) an indication of improvement (worsening) of the test drug as
compared to the reference value.

3.1.1 Test for Equality

To test whether there is a difference between the mean response of the
test drug and the reference value, the following hypotheses are usually
considered:

HO : c = 0 versus Ha : e ^ 0.

When a1 is known, we reject the null hypothesis at the a level of sig-
nificance if

1 x -

where za is the upper ath quantile of the standard normal distribution.
Under the alternative hypothesis that e / 0, the power of the above test is
given by
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where $ is the cumulative standard normal distribution function. By ig-
noring a small value < a/2, the power is approximately

V -a/2

As a result, the sample size needed to achieve power 1 — /3 can be obtained
by solving the following equation

a/2 = Z/3-

This leads to

(3.1.2)

(if the solution of (3.1.2) is not an integer, then the smallest integer that is
larger than the solution of (3.1.2) should be taken as the required sample
size). An initial value of e (or e/<r) is needed to calculate the sample size
according to (3.1.2). A lower bound of e/cr, usually obtained from a pilot
study or historical data, can be used as the initial value. A lower bound
of e/cr can also be defined as the clinical meaningful difference between the
response means relative to the standard deviation a.

When <r2 is unknown, it can be replaced by the sample variance s2 given
in (3.1.1), which results in the usual one-sample t-test, i.e., we reject the
null hypothesis HQ if

^a/2,n-l?

where ia,n-i is the upper ath quantile of a t-distribution with n — 1 degrees
of freedom. Under the alternative hypothesis that e 7^ 0, the power of the
one-sample t-test is given by

T~ *n- a/2,n-l n-\ ta/2,n-l

where Tn-i(-\6) is the cumulative distribution function of a non-central t-
distribution with n — 1 degrees of freedom and the non-centrality parameter
6. When an initial value of e/a is given, the sample size needed to achieve
power 1 — (3 can be obtained by solving

/ x/^e\ / y^e\
•In-l |£a/2,n-l - I - Ai-1 I —ta/2,n-l - I = P-

By ignoring a small value < a/2, the power is approximately

(6.1.6)

r— -'n- l Ca/2,n-l
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Hence, the required sample size can also be obtained by solving

T (+ Vn\t\\ ,0 /o i ^
Ai-l I *a/2,n-l I = P- (3.1.4)

Table 3.1.1 lists the solutions of this equation for some values of a, f3,
and 9 — |e|/cr.

When n is sufficiently large, ta/2,n-i ~ za/2, t/3,n-i ~ -2/3)

*

Hence, formula (3.1.2) may still be used in the case of unknown <j.

3.1.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

HQ : e < 5 versus Ha : e > 5,

where 8 is the superiority or non-inferiority margin. When 8 > 0, the re-
jection of the null hypothesis indicates superiority over the reference value.
When 8 < 0, the rejection of the null hypothesis implies non-inferiority
against the reference value.

When cr2 is known, we reject the null hypothesis HQ at the a level of
significance if

X — Lio — 6

If 6 > 6, the power of the above test is

$

As a result, the sample size needed to achieve power 1 — (3 can be obtained
by solving

V^(6 - (?)
%a — Z/31

<J

which leads to

(6-5)2 '

When a2 is unknown, it can be replaced by s2 given in (3.1.1). The null
hypothesis HQ is rejected at the a level of significance if

x - //o - S
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Table 3.1.1: Smallest n with Tn_i (ta,n-i\y/n9) < (3

e
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23
0.24
0.25
0.26
0.27
0.28
0.29
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52

a =

80%
787
651
547
467
403
351
309
274
245
220
199
180
165
151
139
128
119
110
103
96
90
79
70
63
57
52
47
43
40
37
34
32

2.5%

90%
1053
871
732
624
539
469
413
366
327
293
265
241
220
201
185
171
158
147
136
127
119
105
93
84
75
68
62
57
52
48
44
41

a =
1-
80%
620
513
431
368
317
277
243
216
193
173
156
142
130
119
109
101
93
87
81
75
71
62
55
50
45
41
37
34
31
29
27
25

5%
J — —

90%
858
710
597
509
439
382
336
298
266
239
216
196
179
164
151
139
129
119
111
104
97
86
76
68
61
55
50
46
42
39
36
34

6
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68
0.70
0.72
0.74
0.76
0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.04
1.08
1.12
1.16
1.20
1.30
1.40
1.50

a —
1-
80%
29
28
26
24
23
22
21
19
19
18
17
16
15
15
14
14
13
13
12
12
11
11
11
10
10
9
9
8
8
7
7
6

2.5%

90%
39
36
34
32
30
28
27
25
24
23
22
21
20
19
18
17
17
16
16
15
14
14
14
13
12
12
11
10
10
9
8
7

a =

80%
23
22
20
19
18
17
16
15
15
14
13
13
12
12
11
11
10
10
10
9
9
9
8
8
8
7
7
7
6
6
5
5

5%
j-3

90%
31
29
27
26
24
23
22
20
19
18
18
17
16
15
15
14
14
13
13
12
12
11
11
11
10
9
9
8
8
7
7
6
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The power of this test is given by

i-r (t-L -*n —1 I LO..TI — 1 a

The sample size needed to achieve power 1 — (3 can be obtained by solving

By letting $ = (e — J)/cr, Table 3.1.1 can be used to find the required sample
size. From approximation (3.1.5), formula (3.1.6) can be used to calculate
the required sample size when n is sufficiently large.

3.1.3 Test for Equivalence

The objective is to test the following hypotheses

HQ : \f.\ > S versus Ha : |e| < 8.

The test drug is concluded to be equivalent to a gold standard on average
if the null hypothesis is rejected at significance level a.

When a2 is known, the null hypothesis HQ is rejected at significance
level a if

6) ^Jn(x - //0 + 6)
<C — za and

a

The power of this test is given by

, L (3.L7)

-
Although the sample size n can be obtained by setting the power in (3.1.7)
to 1 — ,3, it is more convenient to use the following method. Note that the
power is larger than

L (3.L8)

Hence, the sample size needed to achieve power 1 — f3 can be obtained by
solving

This leads to
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Note that the quantity in (3.1.8) is a conservative approximation to the
power. Hence, the sample size calculated according to (3.1.9) is conser-
vative. A different approximation is given in Chow and Liu (1992, 2000),
which leads to the following formula for sample size calculation:

f (za+z0/2)
2
ff

2 : f , _ n
| £-5 11 C — \J

if e ̂  0.
n~ 1 (za+z0)

2<r

When <r2 is unknown, it can be estimated by s2 given in (3.1.1). The
null hypothesis HQ is rejected at significance level a if

- 8) , ^/n(x - HQ + 6)
< —ta,n-i and > ra ,n_i.

s

The power of this test can be estimated by

1 - Tn_]
- c) + e]

Hence, the sample size needed to achieve power 1 — ft can be obtained by
setting the power to 1 — ft. Since the power is larger than

a conservative approximation to the sample size needed to achieve power
1 — ft can be obtained by solving

which can be done by using Table 3.1.1 with 6 = (S — |e|)/cr. From ap-
proximation (3.1.5), formula (3.1.9) can be used to calculate the required
sample size when n is sufficiently large.

3.1.4 An Example

To illustrate the use of sample size formulas derived above, we first consider
an example concerning a study of osteoporosis in post-menopausal women.
Osteoporosis and osteopenia (or decreased bone mass) most commonly de-
velop in post-menopausal women. The consequences of osteoporosis are
vertebral crush fractures and hip fractures. The diagnosis of osteoporosis is
made when vertebral bone density is more than 10% below what is expected
for sex, age, height, weight, and race. Usually, bone density is reported in
terms of standard deviation (SD) from mean values. The World Health
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Organization (WHO) defines osteopenia as bone density value greater than
one SD below peak bone mass levels in young women and osteoporosis as a
value of greater than 2.5 SD below the same measurement scale. In medical
practice, most clinicians suggest therapeutic intervention should be begun
in patients with osteopenia to prevent progression to osteoporosis.

Suppose a pharmaceutical company is interested in investigating the
effect of a test drug on the prevention of the progression to osteoporosis
in women with osteopenia. Thus, we are interested in showing that after
treatment, the change in bone density in terms of standard deviation from
mean values is less than 1 SD (i.e., 6 — 1.0 SD) assuming that the mean
bone density before the treatment is 1.5 SD (i.e., /IQ =1-5 SD).

Test for Equality

Suppose that the mean bone density after treatment is expected to be 2.0
SD (i.e., Aii = 2.0 SD). We have e = m - ^0 = 2.0 SD -1.5 SD = 0.5 SD.
By (3.1.2), at a = 0.05, the required sample size for having an 80% power
(i.e., /3 — 0.2) for correctly detecting a difference of e = 0.5 SD change from
pre-treatment to post-treatment can be obtained by normal approximation
as

_ (*a/2 + z0)
2a2 _ (1.96 + 0.84)2

H ~ ^ ~ (05)2 « 32'

On the other hand, the sample size can also be obtained by solving equation
(3.1.4). Note that

9 = 11 =0.5.
a

By referring to the column under a — 2.5% (two-sided test) at the row with
0 = 0.5 in Table 3.1.1, it can be found that the sample size needed is 34.

Test for Non-Inferiority

For prevention of progression from osteopenia to osteoporosis, we wish
to show that the mean bone density post-treatment is no less than pre-
treatment by a clinically meaningful difference 5 = 0.5 SD. As a result, by
(3.1.6), at o;=0.05, the required sample size for having an 80% power (i.e.,
/5=0.20) can be obtained by normal approximation as

(zq + z^a2 (1.64 + 0.84)2

'(c-S)'2 (0.5 + 0.5)2

On the other hand, the sample size can also be obtained by using Table
3.1.1. Note that

9= (—- =0.5 + 0.5 = 1.00.
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By referring to the column under a = 5% at the row with 9 = 1.0 in Table
3.1.1, it can be found that the sample size needed is 8.

Test for Equivalence

To illustrate the use of the sample size formula for testing equivalence,
we consider another example concerning the effect of a test drug on body
weight change in terms of body mass index (BMI) before and after the treat-
ment. Suppose clinicians consider that a less than 5% change in BMI from
baseline (pre-treatment) to endpoint (post-treatment) is not a safety con-
cern for the indication of the disease under study. Thus, we consider 6=5%
as the equivalence limit. The objective is then to demonstrate safety by test-
ing equivalence in mean BMI between pre-treatment and post-treatment of
the test drug. Assume the true BMI difference is 0 (e = 0) and the standard
deviation is 5% (a =0.1), by (3.1.9) with a=0.05, the sample size required
for achieving an 80% power can be obtained by normal approximation as

2 _ (1.64+1.28)20.102

~ - 0052 '

On the other hand, the sample size calculation can also be performed by
using Table 3.1.1. Note that

. .
a 0.10

By referring to the column under a = 5% and 1 — /3 = 90% at the row with
0 = 0.50 in Table 3.1.1, it can be found the sample size needed is 36.

3.2 Two-Sample Parallel Design

Let Xij be the response observed from the jth subject in the ith treatment
group, j = l,...,rii, i = 1,2. It is assumed that x^. j = l , . . . ,nj, i = 1,2,
are independent normal random variables with mean ^ and variance a2.
Let

^• = - x « and * = + n o _ 2Hl j=l ni ^ "2 Z i=\ j=l

be the sample means for iih treatment group and the pooled sample vari-
ance, respectively. Also, let e = ^ — //i be the true mean difference be-
tween a test drug (/^) and a placebo control or an active control agent
(/^i). Without loss of generality, consider e > 0 (e < 0) as an indication
of improvement (worsening) of the test drug as compared to the placebo
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control or active control agent. In practice, it may be desirable to have an
unequal treatment allocation, i.e., n\/n<2 = K for some K. Note that K = 1
indicates a 1 to 2 test-control allocation, whereas K — 1/2 indicates a 2 to
1 test-control allocation.

3.2.1 Test for Equality

The objective is to test whether there is a difference between the mean
responses of the test drug and the placebo control or active control. Hence,
the following hypotheses are considered:

HQ : e = 0 versus Ha : e ^ 0.

When a1 is known, the null hypothesis HQ is rejected at the significance
level a if

x\. ~ £2-
a/2-

Under the alternative hypothesis that e / 0, the power of the above test is

\ Y ni n-2 I

after ignoring a small term of value < a/2. As a result, the sample size
needed to achieve power I — /3 can be obtained by solving the following
equation

This leads to

— Kri2 and

When a2 is unknown, it can be replaced by s2 given in (3.2.1).
hypothesis HQ is rejected if

(3.2.2)

The null

x2. > ta / 2 , n i + r i 2 — 2 -
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Under the alternative hypothesis that e ^ 0, the power of this test is

Thus, with HI = KHZ, the sample size n-2 needed to achieve power 1 — f3 can
be obtained by setting the power equal to 1 — /3.

After ignoring a small term of value < a/2, the power is approximately

Hence, the required sample size n<i can also be obtained by solving

V"2H i = ̂

Table 3.2.1 can be used to obtain the solutions for K = 1,2, and some values
of 9 = |e|/(7, a, and (3. When K = 1/2, Table 3.2.1 can be used to find the
required ni and n<2 = 2n\.

From approximation (3.1.5), formula (3.2.2) can be used when both n\
and ri2 are large.

3.2.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

HQ : e < 8 versus Ha : e > 5,

where 8 is the superiority or non-inferiority margin. When S > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When 8 < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control.

When cr2 is known, the null hypothesis HQ is rejected at the a level of
significance if
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Table 3.2.1: Smallest n with 7ji+K)n_2 (ta,(i+K)n-2\\/n0/Vl

0
0.30
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

a =
^ _

80%
176
155
137
123
110
100
90
83
76
70
64
60
55
52
48
45
39
34
29
26
23
21
19
17
16
15
13
12
12
11
10
10
9
9

K =

2.5%
/o

90%
235
207
183
164
147
133
121
110
101
93
86
79
74
68
64
60
51
44
39
34
31
27
25
23
21
19
17
16
15
14
13
12
12
11

1
a =
1-
80%
139
122
108
97
87
78
71
65
60
55
51
47
44
41
38
36
30
26
23
21
18
16
15
14
12
11
11
10
9
9
8
8
7
7

5%
a

90%
191
168
149
133
120
108
98
90
82
76
70
65
60
56
52
49
42
36
32
28
25
22
20
18
17
15
14
13
12
11
11
10
9
9

a =
1-
80%
132
116
103
92
83
75
68
62
57
52
48
45
42
39
36
34
29
25
22
20
17
16
14
13
12
11
10
9
9
8
8
7
7
6

hi —

2.5%

P =
90%
176
155
137
123
110
100
90
83
76
70
64
59
55
51
48
45
38
33
29
26
23
21
19
17
15
14
13
12
11
11
10
9
9
8

2
a =
1-
80%
104
92
81
73
65
59
54
49
45
41
38
35
33
31
29
27
23
20
17
15
14
12
11
10
9
9
8
7
7
6
6
6
5
5

5%

0 =
90%
144
126
112
100
900
810
740
670
620
570
520
480
450
420
390
370
310
270
240
210
190
170
150
140
130
120
110
100
90
90
80
80
70
70
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Under the alternative hypothesis that e > 6, the power of the above test is
given by

The sample size needed to achieve power 1 — f3 can be obtained by solving

e-S

This leads to

and
(e-

(3.2.3)

When cr2 is unknown, it can be replaced by s2 given in (3.2.1). The null
hypothesis HQ is rejected if

Under the alternative hypothesis that e > <5, the power of this test is given
by

e-S
1-Z,ni+n.2—2

The sample size needed to achieve power 1 — (3 can be obtained by solving
the following equation:

By letting 9 = (e — S)/cr, Table 3.2.1 can be used to find the required sample
size.

From approximation (3.1.5), formula (3.2.3) can be used to calculate
the required sample size when n\ and n<2 are sufficiently large.

3.2.3 Test for Equivalence

The objective is to test the following hypotheses

HQ : \e\> 6 versus Ha : \e\ < S.
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The test drug is concluded to be equivalent to the control in average if the
null hypothesis is rejected at significance level a.

When cr2 is known, the null hypothesis HQ is rejected at the a level of
significance if

Under the alternative hypothesis that \e\ < 6, the power of this test is

, t < S - e

-H

As a result, the sample size needed to achieve power 1 — /3 can be obtained
by solving the following equation

This leads to

r?i = KH2 and n^ = .
(6-\e\)

(3.2.4)

When cr2 is unknown, it can be replaced by s2 given in (3.2.1). The null
hypothesis HQ is rejected at the a level of significance if

Under the alternative hypothesis that |e| < <5, the power of this test is

l - T n i + n a _ 2 | t Q n i + n a _ 2
 6~6

—2 I ( -a ,n i+n2—2
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Hence, with n\ = KHZ, the sample size 77,2 needed to achieve power 1 — /3
can be obtained by setting the power to 1 — /?. Since the power is larger
than

(t— 2 I t a ,m+n2—2

a conservative approximation to the sample size n<2 can be obtained by
solving

/ \
_ / ?
~ 2'

Table 3.2.1 can be used to calculate n\ and n^.

From approximation (3.1.5), formula (3.2.4) can be used to calculate
the required sample size when HI and n<2 are sufficiently large.

3.2.4 An Example

Consider an example concerning a clinical trial for evaluation of the effect
of a test drug on cholesterol in patients with coronary heart disease (CHD).
Cholesterol is the main lipid associated with arteriosclerotic vascular dis-
ease. The purpose of cholesterol testing is to identify patients at risk for
arteriosclerotic heart disease. The liver metabolizes the cholesterol to its
free form and transported in the bloodstream by lipoproteins. As indicated
by Pagana and Pagana (1998), nearly 75% of the cholesterol is bound to low
density lipidproteins (LDLs) and 25% is bound to high density liproteins
(HDLs). Therefore, cholesterol is the main component of LDLs and only
a minimal component of HDLs and very low density lipoproteins. LDL is
the most directly associated with increased risk of CHD.

A pharmaceutical company is interested in conducting a clinical trial
to compare two cholesterol lowering agents for treatment of patients with
CHD through a parallel design. The primary efficacy parameter is the LDL.
In what follows, we will consider the situations where the intended trial is
for (i) testing equality of mean responses in LDL, (ii) testing non-inferiority
or superiority of the test drug as compared to the active control agent, and
(iii) testing for therapeutic equivalence. All sample size calculations in this
section are performed for achieving an 80% power (i.e., /5 = 0.20) at the
5% level of significance (i.e., a — 0.05).

Test for Equality

As discussed in Chapter 1, hypotheses for testing equality are point hy-
potheses. A typical approach for sample size calculation is to reject the
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null hypothesis of no treatment difference and conclude that there is a sig-
nificant difference between treatment groups. Then, sample size can be
chosen to achieve an 80% power for detecting a clinically meaningful dif-
ference (i.e., 6). In this example, suppose a difference of 5% (i.e., 6 = 5%)
in percent change of LDL is considered of clinically meaningful difference.
By (3.2.2), assuming that the standard deviation is 10% (i.e., a = 10%),
the sample size by normal approximation can be determined by

2(2a/2 + z0)
2a2 2 x 0.282 ^

HI = n2 = - 2 - = n n _ 2 » 63.
c2 0.05^

On the other hand, the sample size can also be obtained by using Table
3.2.1. Note that

. .
a 0.10

By referring to the column under a = 2.5% at the row with 6 = 0.50 in
Table 3.2.1, it can be found that the sample size needed is 64.

Test for Non-Inferiority

Suppose that the pharmaceutical company is interested in establishing non-
inferiority of the test drug as compared to the active control agent. Simi-
larly, we consider the difference of 5% is a difference of clinical importance.
Thus, the non-inferiority margin is chosen to be 5% (i.e., 6 = —0.05). Also,
suppose the true difference in mean LDL between treatment groups is 0%
(i.e., e=//2(test)-/^i (control) = 0.00). Then, by (3.2.3), the sample size by
normal approximation can be determined by

2(za + zp)2a2 2 x 0.2492

~ (e-6)2 - (-0.01 -(-0.

On the other hand, the sample size can also be obtained by using Table
3.2.1. Note that

^ = ao5
a- 0.10

By referring to the column under a = 5% at the row with 6 — 0.50 in Table
3.2.1, it can be found that the sample size needed is 51.

Test for Equivalence

For establishment of equivalence, suppose the true mean difference is 1%
(i.e., e = 1%) and the equivalence limit is 5% (i.e., 6 = 0.05). According to
(3.2.4), the sample size by normal approximation can be determined by

2 2x0.292 2

= (O.Q5 - o.oi)2 * 107'



3.3. Two-Sample Crossover Design 63

On the other hand, the sample size can also be obtained by using Table
3.2.1. Note that

*- 0-04
0.10

= 0.40.

By referring to the column under a = 5%, (3 — 0.10 at the row with 0 = 0.40
in Table 3.2.1, it can be found that the sample size needed is 108.

3.2.5 Remarks

The assumption that a\ = a\ may not hold. When d{ ^ a\, statistical
procedures are necessarily modified. If a\ and a\ are unknown, this be-
comes the well-known Behrens-Fisher problem. Extensive literature have
been devoted to this topic in the past several decades. Miller (1997) gave
a comprehensive review of research work done in this area. Most of the ex-
isting methods may suffer from one or more of the following disadvantages:
(i) undesirable properties, e.g., some tests are randomized tests, (ii) com-
plexity; (iii) inability for controlling significance level, (iv) insufficient or
little power, (v) no formula for sample size calculation. As an alternative,
Wang and Chow (2002) proposed a procedure using the method by Howe's
approximation I.

In practice, it is suggested that superiority be established by testing
non-inferiority first. Once the null hypothesis of inferiority is rejected, test
for superiority is performed. This test procedure controls the overall type I
error rate at the nominal level a because it is a closed test procedure. More
details regarding closed testing procedures can be found in Marcus, Peritz
and Gabriel (1976).

3.3 Two- Sample Crossover Design

In this section, we consider a 2 x 2m replicated crossover design comparing
mean responses of a test drug and a reference drug. Let yijki be the /th
replicate or response (/ = l,... ,m) observed from the jth subject (j =
l,...,n) in the iih sequence (i = 1,2) under the kth treatment (k = 1,2).
The following model is considered:

Vijki = Vk + Jik + Sijk + Cijki, (3.3.1)

where ̂  is the kth treatment effect, 7^ is the fixed effect of the ith sequence
under treatment &, and s^k is the random effect of the jth subject in the ith
sequence under treatment A; . (5^1,5^2),* = l ,2, j = l,...,n, are assumed to
be i.i.d. as bivariate normal random variables with mean 0 and covariance
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matrix
°"BT P&BT&BR

P<JBT&BR a\R

Ciju and 6ij2i are assumed to be independent normal random variables with
mean 0 and variance cr^/T or o~\VR (depending on the treatment). Define

a2
D is the variability due to the effect of subject-by-treatment interaction,

which reflects the heteroscedasticity of the subject random effect between
the test drug and the reference drug.

Let e = H2 ~ /^i (test — reference),

Vijk- = —(Vijki 4- • • • + yijkm) and d{j = y^i. - y l j 2 - .

An unbiased estimate for e is given by

Under model (3.3.1), e follows a normal distribution with mean e and vari-
ance a^ l/(2n), where

VWR)- (3-3-2)

An unbiased estimate for a^ can be obtained by

2 n

Without loss of of generality, consider e > 0 (e < 0) as an indication of
improvement (worsening) of the test drug as compared to the reference
drug. In practice. am is usually unknown.

3.3.1 Test for Equality

The objective is to test the following hypotheses

Ho : e = 0 versus Ha : e 7^ 0.
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The null hypothesis HO is rejected at a level of significance if

e

<7m/\/2n
>t:a/2,2n-2-

Under the alternative hypothesis that e ̂  0, the power of this test is given
by

— ^2n-2 I £a/2,2n-:
v/2ne\

&m J
ta/2,2n-2

2ne

As a result, the sample size needed to achieve power 1 — (3 can be obtained
by setting the power to 1 — j3 or, after ignoring a small term < a/2, by
solving

T (, vW
^2n-2 I Ca/2,2n-<

Table 3.2.1 with K = 1 and 9 = 2|e|/am can be used to obtain n. From
approximation (3.1.5),

n = (^2 +I")V" (3.3.3)

for sufficiently large n.

3.3.2 Test for Non-Inferiority/Superiority

Similar to test for non-inferiority/superiority under a parallel design, the
problem can be unified by testing the following hypotheses:

HQ : e < 8 versus Ha : e > 5,

where 8 is the non-inferiority or superiority margin. When S > 0, the
rejection of the null hypothesis indicates the superiority of test drug against
the control. When S < 0, the rejection of the null hypothesis indicates the
non-inferiority of the test drug over the control. The null hypothesis HQ is
rejected at the a level of significance if

e-6
~ , /—— > *a,2n-2-
0-TO/v2n

Under the alternative hypothesis that e > <5, the power of this test is given
by

crm/V2n.

As a result, the sample size needed to achieve power 1 — (3 can be obtained
by solving

crm/v/2n
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which can be done by using Table 3.2.1 with K = 1 and 9 — 2(e - 6}/am.
When n is sufficiently large, approximation (3.1.5) leads to

(Zq (3.3.4)

3.3.3 Test for Equivalence

The objective is to test the following hypotheses

#0 : H > 6 versus Ha : |e| < 6.

The test drug is concluded equivalent to the control in average, i.e., the
null hypothesis HQ is rejected at significance level a when

^(e - 6) , V2n(e + 6)
< -*a,2n-2 and :

Under the alternative hypothesis that |e| < 6, the power of this test is

^2n-2 I *a/2,2n-2

As a result, the sample size needed to achieve power 1 - ft can be obtained
by setting the power to 1 — ft. Since the power is larger than

2n(<J- |e |

a conservative approximation of n can be obtained by solving

2n(6 -

which can be done by using Table 3.2.1 with K — I and 9 = 2(6 — |e|))/erm.
When n is large, approximation (3.1.5) leads to

a +

-
(3.3.5)

Note that an important application of testing for equivalence under
crossover design is testing average bioequivalence (see Section 10.2). By
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applying a similar idea as introduced by Chow and Liu (2000), a different
approximate sample size formula can be obtained as

(Zq+Z/3/2) gm !f _ A
2(c5)2 u e — u

2(<5-|e|)2 f

3.3.4 An Example

Therapeutic Equivalence

Consider a standard two-sequence, two-period crossover design (m = 1)
for trials whose objective is to establish therapeutic equivalence between
a test drug and a standard therapy. The sponsor is interested in hav-
ing an 80% (1 — (3 = 0.8) power for establishing therapeutic equivalence.
Based on the results from previous studies, it is estimated that the vari-
ance is 20% (erm = 0.20). Suppose the true mean difference is —10% (i.e.,
e = //2(test) — //i (reference) = —0.10). According to (3.3.5),

(1.64 + 1.28)20.202

2(6 -|e|)2 2(0.25-0.10)2 ~ '

On the other hand, the sample size calculation can also be performed by
using Table 3.2.1. Note that

= 2(6- H) = 2(0.25-|-0.10|) =
am 0.20

By referring to the column under a = 5%, 1 — (3 = 90% at the row with
9 = 1.50 in Table 3.2.1, it can be found that the sample size needed is 9.

Non-Inferiority

Suppose that the sponsor is interested in showing non-inferiority of the
test drug against the reference with a non-inferiority margin of —20%
(6 — —20%). According to (3.3.4), the sample size needed is given by

= (za + Z0)2v2
m = (1.64 + 0.84)20.202 ^

U 2(e-<T)2 2(-0.1-(-0.2))2

On the other hand, the sample size calculation can also be performed by
using Table 3.2.1. Note that

= 2(e - 8) = 2(-0.10-(-0.20)) = OQ

am 0.20

By referring to the column under a = 5%, 1 — (3 = 80% at the row with
9 = 1.00 in Table 3.2.1, it can be found that the sample size needed is 14.
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3.3.5 Remarks

Sample size calculation for assessment of bioequivalence under higher-order
crossover designs including Balaam's design, two-sequence dual design, and
four-period optimal design with or without log-transformation can be found
in Chen, Li, and Chow (1997). For assessment of bioequivalence, the FDA
requires that a log-transformation of the pharmacokinetic (PK) responses
be performed before analysis. Chow and Wang (2001) examined the differ-
ence in sample size calculation under a crossover design with and without
log-transformation.

In this section, we focus on 2 x 2m replicated crossover designs. When
ra = 1, it reduces to the standard two-sequence, two-period crossover de-
sign. The standard 2 x 2 crossover design suffers the following disadvan-
tages: (i) it does not allow independent estimates of the intra-subject vari-
abilities because each subject only receives each treatment once, (ii) the
effects of sequence, period, and carry-over are confounded and cannot be
separated under the study design. On the other hand, the 2 x 2m (m > 2)
replicated crossover design not only provides independent estimates of the
intra-subject variabilities, but also allows separate tests of the sequence,
period, and carry-over effects under appropriate statistical assumption.

3.4 Multiple-Sample One-Way ANOVA

Let Xij be the jth subject from the ith treatment group, ,i = !,. . . ,&,
j = 1, ...,n. Consider the following one-way analysis of variance (ANOVA)
model:

Xij — /ij "T f-ij i

where Ai is the fixed effect of the ith treatment and ejj is a random error
in observing x^. It is assumed that Cij are i.i.d. normal random variables
with mean 0 and variance a2. Let

" 2

where
-. n ., /c

X~ • ,- \ T* • • Q Tl H 'T* — \ "T •7 . / it/ 7 -j d J. J.V-1 J>. . . / Ju -i. •

n 4-f /s 4-^
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Then, cr2 can be estimated by

^ o
(7 =

SSE
(3.4.1)

3.4.1 Pairwise Comparison

In practice, it is often of interest to compare means among treatments under
study. Thus, the hypotheses of interest are

versus Ha :

for some pairs ( i , j ) . Under the above hypotheses, there are k(k — l)/2
possible comparisons. For example, if there are four treatments in the study,
then we can also a maximum of six pair wise comparisons. In practice, it is
well recognized that multiple comparison will inflate the type I error. As a
result, it is suggested that an adjustment be made for controlling the over
all type I error rate at the desired significance level. Assume that there
are r comparisons of interest, where r < k(k — l)/2. We reject the null
hypothesis HQ at the a level of significance if

>
\/2>

The power of this test is given by

a/(2r),fc(n-l) k(n-l)

-Tfc(n-l) ( *a/(2r),fc(n-l) 7n^~ )

where e^ = ^ — p,j. As a result, the sample size needed to achieve power
1 — j3 in for detecting a clinical meaningful difference between /ij and p,j is

n = maxjnjj, for all interested comparison},

where n^ is obtained by solving

(3.4.2)

T +Jk(nij-l) ( Ca/(2T),fc(n0--l) = 0.

When the sample size is sufficiently large, approximately

2(za/(2r) + Z0)2<T2
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3.4.2 Simultaneous Comparison

The hypotheses of interest is

HQ : f.ii = 1^2 = • • • — l-ik
versus Ha : ̂  ^ p,j for some 1 < i < j < k.

The null hypothesis HO is rejected at the a level of significance if

_ nSSA/(fc-l)
A ~ SSE/[fc(n - 1)] ^-^(n-i),

where FQ )fe_1 ) /e(n_1) is the a upper quantile of the F-distribution with fc— 1
and k(n — 1) degrees of freedom. Under the alternative hypothesis, the
power of this test is given by

P(FA > FQ , ,_ l i f c (n_1}) * P(nSSA > <72x*,fc-i) ,

where XQ A--I ^s tne Qth upper quantile for a x2 distribution with fc —
1 degrees of freedom and the approximation follows from the fact that
SSE/[/c(n — 1)] is approximately <r2 and (k— l)x^ k-i ~ Fa,k-\,k(n-i) when
k(n — 1) is large. Under the alternative hypothesis, nSSA/a2 is distributed
as a non-central x2 distribution with degrees of freedom k — I and non-
centrality parameter A = nA, where

Hence, the sample size needed to achieve power 1 — 0 can be obtained by
solving

xLi W, f c - i |A)=A

where xI-i(' |A) is the cumulative distribution function of the non-central
X2 distribution with degrees of freedom k — l and non-centrality parameter
A. Some values of A needed to achieve different power (80% and 90%) with
different significance level (1% and 5%) for different number of treatment
groups are listed in Table 3.4.1. Once an initial value A is given and a A is
obtained from Table 3.4.1, the required sample size is n — A/ A.

3.4.3 An Example

To illustrate the use of Table 3.4.1 for sample size determination when com-
paring more than two treatments, consider the following example. Suppose
that we are interested in conducting a four-arm (k — 4) parallel group,
double-blind, randomized clinical trial to compare four treatments. The
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Table 3.4.1: A Values Satisfying xl-i(x2
a,k-M

k
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1-0
a = 0.01

11.68
13.89
15.46
16.75
17.87
18.88
19.79
20.64
21.43
22.18
22.89
23.57
24.22
24.84
25.44
26.02
26.58
27.12
27.65

= 0.80
a = 0.05

7.85
9.64
10.91
11.94
12.83
13.63
14.36
15.03
15.65
16.25
16.81
17.34
17.85
18.34
18.82
19.27
19.71
20.14
20.56

l-f3
a = 0.01

14.88
17.43
19.25
20.74
22.03
23.19
24.24
25.22
26.13
26.99
27.80
28.58
29.32
30.04
30.73
31.39
32.04
32.66
33.27

= 0.90
a = 0.05

10.51
12.66
14.18
15.41
16.47
17.42
18.29
19.09
19.83
20.54
21.20
21.84
22.44
23.03
23.59
24.13
24.65
25.16
25.66

comparison will be made with a significance level of a = 0.05. Assume that
the standard deviation within each group is a — 3.5 and that the true mean
responses for the four treatment groups are given by

//i = 8.25, p,2 = 11.75, fj,3 = 12.00, and /i4 = 13.00.

Then, A2 = 1.05. From Table 3.4.1, for a four-group parallel design (k — 4),
the non-centrality parameter A needed to achieve a power of 80% (j3 =
0.20) at 5% level of significance is 10.91. As a result, the sample size per
treatment group can be obtained as

10.91
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3.4.4 Remarks

In practice, a question concerning when pair wise comparisons or a simul-
taneous comparison should be used often rises. To address this question,
consider the following example. Suppose a sponsor is investigating a phar-
maceutical compound for treatment of patients with cancer. The investi-
gator is not only interested in showing efficacy of the test drug but also in
establishing dose response curve. To achieve this study objective, a four-
group parallel trial is designed with four treatments: P(Placebo), A(10
mg), B(20 mg), and C(30 mg). Let /up, HA, HB-, and He represent the true
mean of the clinical response under the four treatments, respectively. Since
the primary objective of the trial is to demonstrate the efficacy of the test
drug. The following hypotheses for pairwise comparison as compared to
the placebo are useful for demonstration of efficacy of the test drug.

HQ : /.ip = iiA versus Ha : HP ̂  HA

HQ : HP — HB versus Ha : HP ^ HB

HO : /.IP ~ He versus Ha • HP ^ He-

On the other hand, the following hypotheses for simultaneous comparison
among doses is usually considered for studying dose response

HQ : HA = ILB = He versus Ha : not HQ.

Note that in practice, it is often of interest to test the null hypothesis
of no treatment difference against an ordered alternative hypothesis, e.g.,
Ha '• P>A < P-B < He- In this case, some robust contrast-based trend tests
(e.g., Meng, Davis, and Roth, 1993) can be used for sample size calculation.

3.5 Multiple-Sample Williams Design

In clinical research, crossover design is attractive because each subject
serves as his/her control. In addition, it removes the inter-subject vari-
ability from comparison under appropriate statistical assumption. For ex-
ample, the United States Food and Drug Administration (FDA) identifies
crossover design is the design of choice for bioequivalence trials. As a result,
a two-sequence, two-period crossover design comparing two treatments is
often considered in clinical research. In practice, it is often of interest to
compare more than two treatment under a crossover design. When there
are more than two treatments, it is desirable to compare pairwise treat-
ment effects with the same degrees of freedom. Hence, it is suggested that
Williams design be considered. Under a Williams design, the following
model is assumed:
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where y^ is the response from the jth subject in the ith sequence under
the Ith treatment, Pj< is the fixed effect for the j' period, j' is the number of
the period for the ith sequence's Ith treatment, Y^J=I Pj = 0, 7* 1S tne fixed
sequence effect, \LJ is the fixed treatment effect, and e^ is a normal random
variable with mean 0 and variance er^. For fixed i and /, e^-/, j = 1, ..., n are
independent and identically distributed. For fixed i and j, e^/ , / = l,...,a
are usually correlated because they all come from the same subject.

In bioequivalence trials, Williams designs comparing three treatments
(a 6 x 3 crossover design) or four treatments (a 4 x 4 crossover design) are
commonly employed. The construction of a Williams design can be found
in Jones and Kenward (1989) and Chow and Liu (1992, 2000). Note that if
k is an odd integer, a Williams design results in a 2k x k crossover design.
On the other hand, if k is an even integer, a Williams design reduces to a
k x k crossover design.

It should be noted that the sequence-by-period interaction is not in-
cluded in the above model. It is because that the responses from a given
sequence's given treatment are all from the same period. Therefore, the
fixed effect of the sequence-by-period interaction cannot be separated from
the treatment effect without appropriate statistical assumption.

Without loss of generality, assume we want to compare treatments 1
and 2. Let

dij = yijl — Uij2-

Then, the true mean difference between treatment 1 and 2 can be estimated
by

,

^
which is normally distributed with mean e = //i — ̂  and variance aj/(
where a\ is defined to be the variance of d^ and can be estimated by

ffd k(n

i k n / 1 n \
1 V^V^ I J i Y^ j I•^z^zJ^-^z^'^ i=i ,=i \ n j/=1 y

3.5.1 Test for Equality

The objective is to test

HQ : e = 0 versus Ha : e ̂  0.

The null hypothesis HQ is rejected at a level of significance if
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Under the alternative hypothesis that e ^ 0, the power of this test is ap-
proximately

T ( vkne \
1 — •Tfc(n-l) I ta/2,k(n-l) I •

V /
The sample size needed to achieve power 1 — /3 can be obtained by setting
the power to 1 — &. When n is sufficiently large, approximation (3.1.5) leads
to

^'i (3.5.1)
kc2

3.5.2 Test for Non-Inferiority/Superiority

The problem of testing superiority and non-inferiority can be unified by the
following hypotheses:

HQ : 6 < S versus Ha : e > <5,

where S is the superiority or non-inferiority margin. When <5 > 0, the
rejection of the null hypothesis indicates the superiority of test drug over
the control. When S < 0, the rejection of the null hypothesis indicates the
non-inferiority of the test drug against the control. The null hypothesis HQ
is rejected at a level of significance if

e-6
/ r, - u , r u ^ i l — J.;

( J d / v k n

Under the alternative hypothesis that e > <5, the power of this test is given
by

e-6
*a,fc(n-l)

As a result, the sample size needed to achieve power 1 — 0 can be obtained
by setting the power to 1 — (3. When n is sufficiently large, approximation
(3.1.5) leads to

_ (za + ztfal
( }

3.5.3 Test for Equivalence

The objective is to test the following hypotheses

HO : l e i > 6 versus Ha : l e i < 6.
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The test drug is concluded equivalent to the control in average if the null
hypothesis HQ is rejected at significance level a, i.e..

vkn(e — 6} < -t.
(Td

a,fc(n —1) and
kn(e + 6)

Under the alternative hypothesis that \e\ < <5, the power of the above test
is

vkn(6 — e) kn(5 + e)
- Tfc(n-l)

The sample size needed to achieve power 1 — (3 can be obtained by setting
the power to 1 — f3. A conservative approximation to the required sample
size can be obtained by solving

T̂fc(n- l )

When n is large, approximation (3.1.5) leads to

kn(6-\e\)

3.5.4 An Example

Consider a randomized, placebo-controlled, double-blind, three-way (three-
sequence, three-period) crossover trial, which is known as a Williams 6 x 3
(k = 3) crossover trial comparing cardiovascular safety of three different
treatments (A, B, and C). Based on the results from the pilot study, it is
estimated that the variance is 0.10. Suppose the true mean for A, B, and C
are given by 0.20, 0.15, 0.25, respectively. At the 5% level of significance,
the sample size needed for achieving a power of 80% to reject

can be obtained by

= (jLj vs. Ha :

(1.96 + 0.84)20.102

6(0.20-0.15)2

(1.96 + 0.84)20.102

6(0.20 - 0.25)2

(1.96 + 0.84)20.102

6(0.15-0.25)2

fj,j
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As a result, the sample size need per sequence is given by

n = max{6, 6, 2} — 6.

It should be noted that the sample size can also be obtained by using the
non-central t-distribution like before. However, since there are 6 sequences
in this example, which alternates the degrees of freedom. Both Tables 3.1.1
and 3.2.1 cannot be used.

3.6 Practical Issues

At the planning stage of a clinical trial, sample size calculation is necessarily
performed based on appropriate statistical test for the hypotheses that
reflect the study objectives under a valid study design. In this section,
some practical issues that are commonly encountered are discussed.

3.6.1 One-Sided Versus Two-Sided Test

In this chapter, statistical tests used for sample size calculation under ei-
ther a parallel design or a crossover design can be classified into either a
one-sided test (i.e., test for non-inferiority and test for superiority) or a
two-sided test (i.e., test for equality arid test for equivalence). In clinical
research, test for non-inferiority or test for superiority are also known as
one-sided equivalence test. As discussed in Chapter 1, it is very controversy
for the use of a one-sided test or a two-sided test in clinical research. When
switching from a two-sided test for therapeutic equivalence to a one-sided
test for non-inferiority under a parallel design with 1 to 1 allocation, sample
size could be reduced substantially at a fixed a level of significance. Suppose
that the true mean difference between two treatments is e = 0. Based on
(3.2.3) and (3.2.4), the ratio of the sample sizes needed for non-inferiority
and therapeutic equivalence is given by

non-inferiority _ (za

nequi valence (za +

Table 3.6.1 summarizes possible sample size reduction when switching
from testing equivalence to testing non-inferiority (one-sided equivalence).
As it can be seen from Table 3.6.1, the sample size could be reduced by
27.8% when switching from testing equivalence to testing non-inferiority at
the a = 0.05 level of significance but still maintain the same power of 80%.
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Table 3.6.1: Sample Size Reduction from Testing Equivalence
to Testing Non-Inferiority

a
0.10

0.05

0.01

/5
0.1
0.2
0.1
0.2
0.1
0.2

Sample Size Reduction(%)
23.3
31.4
20.9
27.8
17.5
22.9

3.6.2 Parallel Design Versus Crossover Design

As indicated in the previous sections, sample size required for achieving
a desired power under a crossover design may be less than that under a
parallel design. Under a parallel design, treatment comparison is made
based on both inter-subject and intra-subject variabilities, whereas treat-
ment comparison is made based on the intra-subject variability under a
crossover design under appropriate statistical assumption. If both designs
are equally efficient regardless their relative merits and disadvantages, then
the choice of the design should be based on an evaluation of the relative
cost-effectiveness between the increase of an additional treatment period in
a crossover design with respect to the increase of additional subjects in a
parallel design.

Consider the sample size in testing equality or equivalence. The ratio
of the sample size for a 2 x 2 crossover design (m = 1) over the sample size
for a parallel design is given by

f) C\ ej

^crossover _ °WT + °WR + °D
o o o O *

nparallel °WR + awr + °BR + °BT

Table 3.6.2 summarizes possible sample size reduction when switching from
a parallel design to a crossover design under the assumption that &WT —
VWR = GBR — VBR = 1- As it can be seen, the sample size could be
reduced by 30% by swiching a parallel design to a crossover design when
p = 0.6.

3.6.3 Sensitivity Analysis

Sample size calculation is usually performed by using initial values of the
difference in mean responses between treatment groups (i.e., e), the stan-
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Table 3.6.2: Sample Size Reduction from Parallel Design
to Crossover Design

p
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Sample Size Reduction(%)
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

dard deviation (i.e., cr), and the clinically meaningful difference or a pre-
specified superiority /non-inferiority margin or equivalence limit (i.e., 8).
Any slight or moderate deviations from these initial values could result in
a substantial change in the calculated sample sizes. Thus, it is suggested
that a sensitivity analysis with respect to these initial values be performed.
Sensitivity analysis provides useful information regarding what to expect if
a deviation in any of the initial values shall occur. For example, consider a
one-sample problem

versus Ha :

According to (3.1.2), if the standard deviation changes from a to ca for some
c > 0, the ratio of the sample sizes needed before and after the change is
given by

which is independent of the choice of a and (3. Table 3.6.3 summarizes
possible sample size reduction when the standard deviation changes from a
to ca. People in practice may want to see how much the sample size would
increase when the variability increases, which is equivalent to study how
much sample size would be saved if the variability decreases. As a result,
without loss of generality, we would assume c < 1.

From Table 3.6.3, when the standard deviation decreases by 20% (i.e.,
c = 0.8), the sample size could be reduced by 36% when performing a test
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Table 3.6.3: Sample Size Reduction When Variability Decreases

c
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Sample Size Reduction(%)
0.00
0.19
0.36
0.51
0.64
0.75
0.84
0.91
0.96
0.99

for equivalence at the a — 0.05 level of significance but still maintain the
same power of 80%.





Chapter 4

Large Sample Tests for
Proportions

In clinical research, primary clinical endpoints for evaluation of the treat-
ment effect of the compound under study could be discrete variables, for
example, clinical response (e.g., complete response, partial response, and
stable disease), survival in cancer trials, and the presence of adverse events
in clinical trials. For evaluation of treatment effect based on discrete clinical
endpoint, the proportions of events that have occurred between treatment
groups are often compared. Under a given study design, statistical tests
for specific hypotheses such as equality or equivalence/non-inferiority can
be carried out based on the large sample theory in a similar manner as
continuous responses discussed in Chapter 3. In this chapter, our primary
focus will be placed on comparing proportions between treatment groups
with binary responses.

The remaining sections of this chapter are organized as follows. In the
next section, a general procedure of power analysis for sample size calcula-
tion for testing one-sample problem is given. Sections 4.2 and 4.3 summa-
rize statistical procedures for sample size calculation for a two-sample prob-
lem under a parallel-group design and a crossover design, respectively. Sec-
tions 4.4 and 4.5 discuss statistical procedures for testing a multiple-sample
problem under a parallel design and a crossover design (Williams design),
respectively. Formulas for sample size calculation for comparing relative
risks between treatment groups under a parallel design and a crossover de-
sign are given in Section 4.6 and 4.7, respectively. Section 4.8 provides some
practical issues regarding sample size calculation for comparing proportions
in clinical research.

81
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4.1 One-Sample Design

Let X i , i = l,...,n be the binary response observed from the ith subject.
In clinical research, x,i could be the indicator for the response of tumor in
cancer trials, i.e., Xi = 1 for responder (e.g., complete response plus partial
response) or x% — 0 for non-responder. It is assumed that #j's are i.i.d with
P(XI = 1) — p, where p is the true response rate. Since p is unknown, it is
usually estimated by

p= -

Also, let e = p — PQ be the difference between the true response rate of
a test drug (p) and a reference value (PQ). Without loss of generality,
consider e > 0 (e < 0) an indication of improvement (worsening) of the
test drug as compared to the reference value. In practice, it is of interest
to test for equality (i.e., p — PQ), non-inferiority (i.e., p — PQ is greater
than or equal to a pre-determined non-inferiority margin), superiority (i.e.,
p~po is greater than a pre-deterrnined superiority margin), and equivalence
(i.e., the absolute difference between p and PQ is within a difference of
clinical importance). In what follows, formulas for sample size calculation
for testing equality, non-inferiority/superiority, and equivalence are derived.
The formulas provide required sample sizes for achieving a desired power
under the alternative hypothesis.

4.1.1 Test for Equality

To test whether there is a difference between the true response rate of
the test drug and the reference value, the following hypotheses are usually
considered:

HQ : p = PQ versus Ha : p ^ PQ.

or
HQ : e = 0 versus Ha : e ̂  0.

Under the null hypothesis, the test statistic

. /Tlf

(4.1.1)

where e = p—PQ approximately has a standard normal distribution for large
n. Thus, we reject the null hypothesis at the a level of significance if

\/ne
> Za/2-
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Under the alternative hypothesis that p — po + e, where e 7^ 0, the power
of the above test is approximately

p(l-p)
As a result, the sample size needed for achieving a desired power of 1 — j3
can be obtained by solving the following equation

\fn\t\ _
/ , ==F za/2 — z/3-

This leads to

n = ^/2 + **2 P 1 P ' (4'L2)

To use (4.1.2), information regarding p is needed, which may be obtained
through a pilot study or based on historical data. Note that p(l — p} is a
quadratic function symmetric about 0.5 on its domain (0,1). Thus, using
(4.1.2) requires an upper bound on p and a lower bound on e2. For example,
if we know that p < p, 1 — p < p, and e2 > e2, where p is a known value
between 0 and 0.5 and e2 is a known positive value, thenp( l — p) < p ( l — p )
and a conservative n can be obtained by using (4.1.2) with e and p replaced
by e and p, respectively.

4.1.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

HQ : p — PQ < 6 versus Ha : p — PQ > 6

or
HQ : e < 6 versus Ha : e > d,

where d is the non-inferiority or superiority margin. When 5 > 0, the re-
jection of the null hypothesis indicates superiority over the reference value.
When d < 0, the rejection of the null hypothesis implies non-inferiority
against the reference value.

When p — PQ — 6, the test statistic

VP(I-P)
approximately has a standard normal distribution for large n. Thus, we
reject the null hypothesis at the a level of significance if

,->
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If e > 6, the power of the above test is given by

As a result, the sample size needed for achieving a power of 1 — (3 can be
obtained by solving the following equation

This leads to

n =
-p)

(t-S)*
(4.1.3)

4.1.3 Test for Equivalence

To establish equivalence, the following hypotheses are usually considered

HQ:\P- Po\ > 6 versus Ha : \p - pQ\ < 8

or
#o : H > 8 versus Ha : |e| < 8.

The proportion of the responses is concluded to be equivalent to the ref-
erence value of po if the null hypothesis is rejected at a given significance
level.

The above hypotheses can be tested using two one-sided tests procedure
as described in Chapter 3. The null hypothesis is rejected at approximately
a level of significance if

When n is large, the power of this test is approximately

-1

As a result, the sample size needed for achieving a power of 1 — /3 can be
obtained by solving the following equations

_7a — 2/3/2,
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which leads to

4.1.4 An Example

To illustrate the use of sample size formulas, consider the same example
concerning a study of osteoporosis in post-menopausal women as described
in Section 3.1.4. Suppose in addition to the study of the change in bone
density post-treatment, it is also of interest to evaluate the treatment effect
in terms of the response rate at the end of the study. Sample size calculation
can then be carried out based on the response rate for achieving a desired
power. The definition of a responder, however, should be given in the
study protocol prospectively. For example, a subject may be defined as
a responder if there is an improvement in bone density by more than one
standard deviation (SD) or 30% of the measurements of bone density.

Test for Equality

Suppose that the response rate of the patient population under study after
treatment is expected to be around 50% (i.e., p = 0.50). By (4.1.2), at
o; — 0.05, the required sample size for having an 80% power (i.e., f3 = 0.2)
for correctly detecting a difference between the post-treatment response
rate and the reference value of 30% (i.e., PQ = 0.30) is

(*«/2 + z0)2p(l ~ P) (1.96 + 0.84)20.5(1- 0.5)
(0.5-0.3)2

Test for Non-Inferiority

For prevention of progression from osteopenia to osteoporosis, we wish to
show that the majority of patients whose change in bone density after
treatment is at least as good as the reference value (30%) (PQ — 30%). Also
assume that a difference of 10% in responder rate is considered of no clinical
significance (6 = —10%). Assume the true response rate is 50% (p = 50%).
According to (4.1.3), at a=0.05, the required sample size for having an 80%
power (i.e., /?=0.2) is

= (zq + ̂ )2p(l-p) = (1.96+ 0.84)20.5(1-0.5) =
U (p-Po-8}2 (0.5-0.3 +O.I)2 ' ~ '
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Test for Equivalence

Assume that one brand name drug for osteoporosis on the market has a
responder rate of 60%. It is believed that a 20% difference in responder
rate is of no clinical significance. Hence, the investigator wants to show
the study drug is equivalent to the market drug in terms of responder rate.
Assume that true responder rate for a study drug is 65%. By (4.1.4), at
Q=0.05, assuming that the true response rate is 60% (i.e., p — 0.60), the
sample size required for achieving an 80% power is

4.1.5 Remarks

For one-sample test for equality, there exist another approach, which is very
similar to (4.1.1) but not exactly the same. This approach will reject the
null hypothesis that e = 0 if

> za/2. (4.1.5)Y
VPo(l -Po)

Since (4.1.1) estimates the variance of y/ne without any constraints, we
refer to (4.1.1) as the unconditional method. One the other hand, since
(4.1.5) estimates the variance of >/ne conditional on the null hypothesis,
we refer to (4.1.5) as the conditional method. Note that both (4.1.1) and
(4.1.5) have asymptotic size a when n is sufficiently large. Then, which
one should be used is always a dilemma because one is not necessarily more
powerful than the other. For the purpose of completeness, the sample size
calculation formula based on (4.1.5) is given below. The same idea can be
applied to the testing problems of non-inferiority/superiority.

Under the alternative hypothesis (e / 0), the power of the test defined
by (4.1.5) is approximately

As a result, the sample size needed for achieving a desired power of 1 — /3
can be obtained by solving the following equation:

This leads to
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4.2 Two- Sample Parallel Design

Let Xij be a binary response from the jth subject in the ith treatment
group, j = 1, ...,ni, i — 1,2. For a fixed i, it is assumed that a^'s are i.i.d.
with P(xij = 1) = Pi. In practice, PJ is usually estimated by the observed
proportion in the ith treatment group:

Hl j=
Let e = pi — p2 be the difference between the true mean response rates of
a test drug (pi) and a control (^2)- Without loss of generality, consider
e > 0 (e < 0) an indication of improvement (worsening) of the test drug as
compared to the control value. In what follows, formulas for sample size
calculation to achieve a desired power under the alternative hypothesis are
derived for testing equality, non-inferiority/superiority, and equivalence.

4.2.1 Test for Equality

To test whether there is a difference between the mean response rates of
the test drug and the reference drug, the following hypotheses are usually
considered:

HQ : e = 0 versus Ha : e ̂  0.

We reject the null hypothesis at the a level of significance if

Pi ~P2 > za/2. (4.2.1)

Under the alternative hypothesis that e ̂  0, the power of the above test is
approximately

As a result, the sample size needed for achieving a power of 1 — /3 can be
obtained by the following equation:

H y—. — Z<x/2 ~ 2/3 •

This leads to
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4.2.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

HQ : c < 6 versus Ha : e > £,

where <5 is the superiority or non-inferiority margin. When 6 > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When 6 < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control.

We reject the null hypothesis at the a level of significance if

Pi - Pi - &
A/pl(l — Pi)/Tl\ + P2(l — P2)/^2

Under the alternative hypothesis that c > 6, the power of the above test is
approximately

+ P2(1-

As a result, the sample size needed for achieving a power of 1 — /3 can be
obtained by solving

which leads to

4.2.3 Test for Equivalence

The objective is to test the following hypotheses:

HQ : \e\ > 5 versus Ha : \e\ < 6.

The null hypothesis is rejected and the test drug is concluded to be equiv-
alent to the control if

pi - p2 - 6



4.2. Two-Sample Parallel Design 89

and
Pi

Under the alternative hypothesis that |e| < 6, the power of the above test
is approximately

As a result, the sample size needed for achieving a power of 1 — /3 can be
obtained by solving the following equation:

6-\e\
Za — 2/3/2 >

which leads to

2 r -i (A O A\
(za~i~Zf3/2j P l ( l — P i ) / I \ \t*£i*t)

^2 ~~ —/r I—[T3— T~ P2(-L — P2j

4.2.4 An Example

Consider the following example concerning the evaluation of anti-infective
agents in the treatment of patients with skin and skin structure infections.
As it is well known, gram-positive and gram-negative pathogens are com-
monly associated with skin and skin structure infections such as strep-
tococci, staphylococci, and various strains of enterobacteriaceae. For the
evaluation of the effectiveness of a test antibiotic agent, clinical assessments
and cultures are usually done at a post-treatment visits (e.g., between 4-
8 days) after treatment has been completed but prior to treatment with
another anti-microbial agent. If the culture is positive, the pathogen(s) is
usually identified and susceptibility testing is performed. The effectiveness
of therapy is usually assessed based on clinical and bacteriological responses
at post-treatment visit. For example, clinical responses may include cure
(e.g., no signs of skin infection at post-treatment visits), improved (e.g., the
skin infection has resolved to the extent that no further systemic antibiotic
therapy is needed based on the best judgment of the investigator), failure
(e.g., lack of significant improvement in the signs and symptoms of the skin
infection at or before post-treatment visits such that a change in antibiotic
treatment is required). On the other hand, bacteriological responses may
include cure (e.g., all pathogens eradicated at post-treatment day 4-8 or
material suitable for culturing has diminished to a degree that proper cul-
tures cannot be obtained), colonization (e.g., isolation of pathogen(s) from
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the original site of infection in the absence of local or systemic signs of infec-
tion at post-treatment visits), and failure (e.g., any pathogen(s) isolated at
post-treatment visits coupled with the investigator's decision to prescribe
alternate antibiotic therapy).

Suppose that a pharmaceutical company is interested in conducting a
clinical trial to compare the efficacy, safety, and tolerability of two anti-
microbial agents when administered orally once daily in the treatment of
patients with skin and skin structure infections. In what follows, we will
consider the situations where the intended trial is for (i) testing equality of
mean cure rates, (ii) testing non-inferiority or superiority of the test drug
as compared to the active control agent, and (iii) testing for therapeutic
equivalence. For this purpose, the following assumptions are made. First,
sample size calculation will be performed for achieving an 80% power (i.e.,
(3 = 0.2) at the 5% level of significance (i.e., a = 0.05).

Test for Equality

In this example, suppose that a difference of e = 20% in clinical response
of cure is considered of clinically meaningful difference between the two
anti-microbial agents. By (4.2.2), assuming that the true cure rate for the
active control agent is 65% (p\ — 0.80 and p2 — p\ +8 = 0.85), respectively,
the sample size with K = 1 (equal allocation) can be determined by

HI = n-2 =

- (L96 + 0.84)2(0.65(1 - 0.65) + 0.85(1 - 0.85))_ _

w 70.

Test for Non-Inferiority

Now, suppose it is of interest to establish non-inferiority of the test drug as
compared to the active control agent. Similarly, we consider the difference
less than 10% is of no clinical importance. Thus, the non-inferiority margin
is chosen to be 10% (i.e., 6 = —0.10). Also, suppose the true mean cure
rates of the treatment agents and the active control are 85% and 65%, re-
spectively. Then, by (4.2.3), the sample size with K = 1 (equal allocation)
can be determined by

(1.64 + Q.84)2(0.65(l - 0.65) + 0.85(1 - 0.85))
(0.20 + 0.10)2

25.
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Test for Superiority

On the other hand, the pharmaceutical company may want to show superi-
ority of the test drug over the active control agent. Assume the superiority
margin is 5% (6 = 0.05). According to (4.2.3), the sample size with K = 1
(equal allocation!) can be determined by

(zq + zp)2(pi(l-pi)+P2(l - P2))

_ (1.64 + 0.84)2(0.65(1 - 0.65) + 0.85(1 - 0.85))
~ (0.20 - 0.05)2

«98.

As it can be seen, testing superiority usually requires larger sample size
than testing non-inferiority and equality.

Test for Equivalence

For establishment of equivalence, suppose the true cure rate for the two
agents are 75% (pi = 0.75) and 80% (p2 = 0.80) and the equivalence limit
is 20% (i.e., 8 — 0.20). According to (4.2.4), the sample size with K = 1
(equal allocation) can be determined by

(zq + zf3)
2(pl(l - pi) + p2(l - P2))

_ (1.64 + 0.84)2(0.75(1 - 0.75) + 0.80(1 - 0.80))
~ (0.20 - 0.05)2

4.2.5 Remarks

For two-sample test for equality there exists another approach, which is
very similar to (4.2.1) but not exactly the same. This approach will reject
the null hypothesis that e = 0 if

£^L XT £ f t c\ r1 \
> x (4-2.5)

where
n2p2

P= ; •ni +n2

Note that the difference between (4.2.1) and (4.2.5) is the following. In
(4.2.1) the variance of pi — p2 is estimated by maximum likelihood estimate



92 Chapter 4. Large Sample Tests for Proportions

(MLE) without any constraint, which is given by p\(\ —p\)/n\ +^2(1 —
p2)/n2. On the other side, in (4.2.5) the same quantity is estimated by MLE
under the null hypothesis (p\ = p2), which gives (1/ni + l/n2)p(l —p). We
will refer to (4.2.1) as unconditional approach and (4.2.5) as conditional
approach. Which test (conditional/unconditional) should be used is al-
ways a problem because one is not necessarily always more powerful than
the other. However, a drawback of the conditional approach is that it is
difficult to be generalized to other testing problems, e.g., superiority, non-
inferiority/equivalence. Let

_ n\p\ + n2p2

ni + n-2

When n = n\ = n2, which is a very important special case, it can be shown
that

I . l\ / 1 J.
n2

-Pi) | P2(l -P2)

n2

-pi)

HI n-2

which implies that under the alternative hypothesis, the unconditional ap-
proach has more power than the conditional method. As a result, in this
section and also the following section, we will focus on the unconditional
method because it provides a unified approach for all the testing problems
mentioned above.

Nevertheless, for the purpose of completeness, the conditional approach
for a two-sample test of equality is also presented below. Under the al-
ternative hypothesis that e / 0 and n\ — nn2, the power of (4.2.5) is
approximately

2 Q / 2

-~p2}/n2

where p = (pi + np2}/(l + K). As a result, the sample size needed for
achieving a power of 1 — (3 can be obtained by solving the following equation

H
+p2(l

X/(l/n
12 —
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This leads to

4.3 Two- Sample Crossover Design

In this section, we consider an o x 2m replicated crossover design compar-
ing mean response rates of a test drug and a reference drug. Let Xijki be
the /th replicate of a binary response (/ = 1, ...,ra) observed from the jth
subject (j = 1, ...,n) in the ith sequence (i = 1, ...,a) under the feth treat-
ment (k - 1,2). Assume that (Zyii, ...,£^im, ...,xijki, . . . ,Zyfc m ) ,« = 1,2,
j = 1, ...,n are i.i.d. random vectors with each component's marginal dis-
tribution specified by P(xijki = 1) — Pk- Note that the observations
from the same subject can be correlated with each other. By specifying
that P(x{jki = 1) = Pki it implies that there is no sequence, period, and
crossover effects. The statistical model incorporates those effects are more
complicated for binary data compared with continuous data. Its detailed
discussion is beyond the scope of this book.

Let e = j?2(test) — pi (reference),

^ijfc- = \%ijkl T ' ' ' r
lib

An unbiased estimator of e is given by

.. a n

e= —
an 1=1 j=i

According to the central limit theorem, e is asymptotically normally dis-
tributed as 7V(0,(jJ), where a\ — var(dij) and can be estimated by

where
1

di. = -
n

j=

Without loss of of generality, consider e > 0 (e < 0) as an indication of
improvement (worsening) of the test drug as compared to the reference
drug.
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4.3.1 Test for Equality

The objective is to test the following hypotheses

HQ : e = 0 versus Ha : e 7^ 0.

Then, the null hypothesis will be rejected at a level of significance if

e
>

Under the alternative hypothesis that e ̂  0, the power of the above test is
approximately

As a result, the sample size needed for achieving a power of 1 — (3 can be
obtained by solving

\/an|e|
-- za/2 = t(3-

&d

This leads to

4.3.2 Test for Non-Inferiority/Superiority

Similar to test for non-inferiority/superiority under a parallel design, the
problem can be unified by testing the following hypotheses:

H0 : e < 6 versus Ha : e > 6,

where 6 is the non-inferiority or superiority margin. When 6 > 0, the
rejection of the null hypothesis indicates the superiority of test drug against
he control. When 6 < 0, the rejection of the null hypothesis indicates the
non-inferiority of the test drug over the control. The null hypothesis will
be rejected at the a level of significance if

c-6

Under the alternative hypothesis that e > <5, the power of the above test is
approximately

- za/2

As a result, the sample size needed for achieving a power of 1 — (3 can be
obtained by solving
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This leads to

4.3.3 Test for Equivalence

The objective is to test the following hypotheses

HO : \e\ > 6 versus Ha : \e\ < 6.

The test drug will be concluded equivalent to the control in average if the
null hypothesis is rejected at a given significance level. At the significance
level of a, the null hypothesis will be rejected if

6) v/an(e + S)
- < -za and - - 7 - '- > za.

Under the alternative hypothesis that |e| < <5, the power of the above test
is approximately

- ,
I.

As a result, the sample size needed for achieving a power of 1 — /3 can be
obtained by solving

This leads to
( Zn ~T~ Zfl /O ) 17j„ \ v " ' P *• I a / i o o\

n > -Tj:—TTyz—• (4.3.3)

4.3.4 An Example

Suppose a sponsor is interested to conducting an open label randomized
crossover trial to compare an inhaled insulin formulation manufactured for
commercial usage for patients with type I diabetes to the inhaled insulin
formulation utilized in phase III clinical trials. Unlike subcutaneous injec-
tion, the efficiency and reproducibility of pulmonary insulin delivery is a
concern. As a result, a replicated crossover consisting of two sequences of
ABAB and BAB A is recommended (a = l,m = 2), where A is the inhaled
insulin formulation for commercial usage and B is the inhaled insulin for-
mulation utilized in phase III clinical trials. Qualified subjects are to be
randomly assigned to receive one of the two sequences. In each sequence,
subjects will receive single doses with a replicate of treatments A and B as
specified in the sequence on days 1, 3, 5, and 7. In this trial, in addition
to the comparison of pharmacokinetic parameters such as area under the
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blood concentration time curve and peak concentration (Cmax), it is also
of interest to compare the safety profiles between the two formulations in
terms of the incidence rate of adverse events.

Test for Equality

Assuming ad = 50%, according to (4.3.1), the sample size needed in or-
der to achieve a 80% (/3 = 0.2) power in detecting 20% (e = 0.20) difference
in adverse events rate is given by

_ (2q/2 + Z0}2a2
d _ (1.96 + 0.84)2xQ.52

Test for Non-Inferiority

Assume ad = 50%, no difference in the mean adverse event rates between
the two treatments (e = 0), and a non-inferiority margin is 5 = —20%. Ac-
cording to (4.3.2), the sample size needed in order to achieve 80% (j3 = 0.2)
power is given by

_ (*a + *0)Vg _ (L64 + 0.84)2x0.52

~ ~
~ 2(6-5)2 - 2 x(0 - ( -0 .2 ) )

Test for Equivalence

Assume ad = 50%, no difference in the mean adverse event rate between
the two treatments (e = 0), and the equivalence limit is 20% (6 = 0.2). Ac-
cording to (4.3.3), the sample size needed in order to achieve 80% (15 — 0.2)
is given by

(za + zy-tfal (1.64+1.28)20.52

= 26.6-27.2

4.3.5 Remarks

For a crossover design, two ways exist to increase the power. One is to
increase the number of subject, i.e., increase n. An other way is to increase
the number of the replicates from each subject, i.e., increase ra. In practice,
usually increasing ra is more cost-effective compared to increasing n. The
power of the test is mainly determined by the variability of e under the
alternative assumption. Heuristically, the variability of e can be considered
consisting two parts, i.e., inter- and intra-subject variability components.
From statistical point of view, increasing n can decrease both inter- and
intra-subject components of e. As a result, as long as n is sufficiently large,



4.4. One-Way Analysis of Variance 97

the power can be arbitrarily close to 1. However, increasing the number
of replicates (ra) can only decrease the intra-subject variability component
of e. When m —> oo, the intra-subject variability will go to 0, but the
inter-subject still remains. Consequently, the power cannot be increased
arbitrarily by increasing m.

In practice, if the intra-subject variability is relatively small compared
with the inter-subject variability, simply increasing the number of replicates
may not provide sufficient power. In such a situation, the number of sub-
jects should be sufficiently large to achieve the desired statistical power. On
the other side, if the intra-subject variability is relatively large compared
with the inter-subject variability, it may be preferable to increase the num-
ber of replicates to achieve the desired power and retain a relatively low
cost.

4.4 One-Way Analysis of Variance

Let Xij be a binary response from the j'th subject in the ith treatment
group, i = 1,..., a, j — 1, • • • , n. Assume that P(xij = 1) = pi. Define

4.4.1 Pairwise Comparison

In practice, it is often of interest to compare proportions among treatments
under study. Thus, the hypotheses of interest are

HQ : Hi = p,j versus Ha : /^ ^ p , j , for some i ^ j.

Under the above hypotheses, there are a(a — l)/2 possible comparisons.
For example, if there are four treatments in the study, then we can have a
maximum of six pairwise comparisons. In practice, it is well recognized that
multiple comparison will inflate the type I error. As a result, it is suggested
that an adjustment be made for controlling the overall type I error rate
at the desired significance level. Assume that there are T comparisons of
interest, where r < a(a — l)/2. We reject the null hypothesis HQ at the a
level of significance if

Pj.
*a/(2r)-
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The power of this test is approximately

== - *a/(2T) ,

where e^ = Pi — Pj- As a result, the sample size needed for detecting
a clinically meaningful difference between pi and PJ can be obtained by
solving

/ ,-, x , n
^Pi(l ~ Pi) + Pj(l - Pj)

This leads to

q/(2r) ^ l ~ P l

The final sample size needed can be estimated by

jj, all interested pairs ( i , j ) } - (4.4.2)

4.4.2 An Example

Suppose an investigator is interested in conducting a parallel-group clinical
trial comparing two active doses of a test compound against a standard
therapy in patients with a specific carcinoma. Suppose the standard ther-
apy, which is referred to as treatment 0, has a 20% response rate. For
illustration purpose, the two active doses of the test compound are referred
to as treatment 1 and treatment 2, respectively. Suppose the investigator
would like to determine whether test treatments 1 and 2 will achieve the
response rates of 40% and 50%, respectively. As a result, statistical com-
parisons of interest include the comparison between the standard therapy
(treatment 0) vs. treatment 1 and between the standard therapy (treat-
ment 0) vs. treatment 2. In this case, r = 2. According to (4.4.1), we
have

(^o.Q5/(2x2) + *o.2)2[0.2(l - 0.2) + 0.4(1 - 0.4)] _
7101 (0.2-0.4)2 ~

and
- (2-24 + 0.84)2[Q.2(1 - 0.2) + 0.5(1 - 0.5)] _

no2 __ ___ _

By (4.4.2), the sample size needed in order to achieve an 80% power is given
by n = max{95,44} = 95.
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4.4.3 Remarks

It should be noted that the maximum approach described in this section
is somewhat conservative in two aspects. First, the a adjustment based
on the method of Bonferroni is conservative. Other less conservative meth-
ods for o; adjustment may be used. Second, the formula is designed to
detect statistical significant differences for all comparisons of interest. In
practice, the comparisons of interest may not be equally important to the
investigator. Hence, one of the comparisons is usually considered as the
primary comparison and sample size calculation is performed based on the
primary comparison. Once the sample size is determined, it can be justified
under appropriate statistical assumption for other comparisons (secondary
comparison) of interest.

4.5 Williams Design

We consider the Williams design described in Section 3.5. Let Xiji be
a binary response from the jth (j = l,...,n) subject in the iih (i =
l,...,a) sequence under the /th (/ = !,...,&) treatment. It is assumed
that ( x i j i , ...,x^b), i = l,...,a,j — l,...,n are i.i.d. random vectors with
P(xiji — 1) = pi. The observations from the same subject can be corre-
lated with each other. By specifying that P(xiji = 1) = pi,l = l,...,m, it
implies that there is no sequence, period, or crossover effects. The statisti-
cal model incorporates those effects that are more complicated for binary
data compared with continuous data. Its detailed discussion is beyond the
scope of this book.

Without loss of generality, assume that we want to compare treatment
1 and treatment 2. Let

The true mean difference between treatment 1 and treatment 2 can be
estimated by

e = —
an

which is asymptotically normally distributed with mean e = p\ — p% and
variance cr^/an, where <7^ is defined to be the variance of d^ and can be
estimated by
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4.5.1 Test for Equality

Let e = n\ — //2 be the true mean difference. The objective is to test the
following hypotheses:

HQ : e — 0 versus Ha : e ^ 0.

Then, the null hypothesis will be rejected at a level of significance if

Under the alternative hypothesis that e ^ 0, the power of this test is ap-
proximately

/one
za/2

As a result, the sample size needed for achieving a power of 1 — (3 can be
obtained as

(za/2 + zp) CFd'- 5 . (4.5.1)

4.5.2 Test for Non-Inferiority/Superiority

The problem of testing superiority and non-inferiority can be unified by the
following hypothesis:

HQ : e < 8 versus Ha : € > 8,

where 8 is the superiority or non-inferiority margin. When 8 > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When 8 < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control. The null hypothesis
will be rejected at a level of significance if

£ - 8

Under the alternative hypothesis that e > J, the power of the above test is
approximately

\(Jd/^fcm
As a result, the sample size needed for achieving a power of 1 — 0 can be
obtained by solving

£ - 8

This leads to
\Za i Zfl) O"rf , . _ O N

n = -f r-j-^. (4.5.2)
a(£ — 8)z
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4.5.3 Test for Equivalence

The objective is to test the following hypotheses:

HQ : \e\ > 8 versus Ha : |e| < 6.

The test drug will be concluded equivalent to the control in average if the
null hypothesis is rejected at a given significance level. For example, at the
significance level of a, the null hypothesis will be rejected if

,/an(e — 8)

and
^/an(e + 8}

Under the alternative hypothesis that |e| < 8, the power of the above test
is approximately

As a result, the sample size needed for achieving a power of 1 — f3 can be
obtained by solving

Za = Z/3/2-
^d

This leads to
(Zn ~\~ Z n / 1 * ) } O"j\ ci i p &/ d , . _ _..

rc = a f g _ i € i \ 2 • (4.5.3)

4.5.4 An Example

Suppose that a sponsor is interested in conducting a 6 x 3 (Williams design)
crossover experiment to compare two active doses (i.e., morning dose and
evening dose) of a test compound against a placebo in patients with sleep
disorder. Similarly, we will refer to the placebo and the two active doses as
treatment 0, treatment 1, and treatment 2, respectively. Qualified subjects
will be randomly assigned to receive one of the six sequences of treatments.
The trial consists of three visits. Each visit consists of two nights and three
days with subjects in attendance at a designated Sleep Laboratory. On
day two of each visit, the subject will receive one of the three treatments.
Polysomnography will be applied to examine the treatment effect on sleep
quality. Suppose the sponsor is interested in examining the existence of
awakeness after the onset of sleep. As a result, sample size calculation
is performed based on the proportion of subjects experiencing awakeness
after the onset of sleep. Based on a pilot study, about 50%, 30%, and



102 Chapter 4. Large Sample Tests for Proportions

35% of subjects receiving treatment 0, 1, and 2, respectively, experienced
awakeness after the onset of sleep. As a result, for performing sample
size calculation, we assume that the response rates for subjects receiving
treatment 0. 1, and 2 are 50%, 30%, and 35%, respectively. Since the
comparisons of interest include the comparison between treatment 1 and
the placebo and between treatment 2 and the placebo, without loss of
generality and for simplicity without adjusting type I error, we will focus
on sample size calculation based on the comparison between treatment 1
and the placebo.

According to the information given above, it follows that the difference
in proportion of subjects experiencing awakeness between treatment 1 and
the placebo is given by 20% (e = 20%). From the pilot study, it is estimated
that <7d — 75%. The significance level is fixed to be a = 5%.

Test for Equality

Since this is a 6 x 3 crossover design, the number of sequence is a = 6.
According to (4.5.1), the sample size needed in order to achieve 80% power
(13 = 0.2) is given by

*q/2 + 20)2frd _ (1.96 + 0.84)20.752

~
ae2 - 6 x 0 . 2 2 -

Test for Superiority

Assuming the superiority margin is 5%, the sample size needed in order
to achieve 80% power (0 — 0.2) is given by

(*° + Z^2°d (1.64 + 0.84)20.752 _
'a(e-5)2 6 x (0.2 - 0.05)2

Test for Equivalence

Assuming the equivalence margin is 30%, the sample size needed is given
by

= (za + ztfal (1.64 + 0.84)20.752 _
U a(«5-|e|)2 6x(0.3-0.2) 2 ~ '

4.6 Relative Risk — Parallel Design

In clinical trials, it is often of interest to investigate the relative effect (e.g.,
risk or benefit) of the treatments for the disease under study. Odds ratio has
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been frequently used to assess the association between a binary exposure
variable and a binary disease outcome since it was introduced by Cornfield
(1956). Let PT be the probability of observing an outcome of interest for
a patient treatment by a test treatment and pc for a patient treated by a
control. For a patient receiving the test treatment, the odds that he/she
will have an outcome of interest over that he/she will not have an outcome
are given by

n PT
OT = •

I-PT

Similarly, for a patient receiving the control, the odds are given by

O = PC

I-Pc

As a result, the odds ratio between the test treatment and the control is
defined as

OT_ = pr(l -Pc)
Oc~

The odds ratio is always positive and usually has a range from 0 to 4.
OR = 1 (i.e., PT = Pc) implies that there is no difference between the
two treatments in terms of the outcome of interest. When 1 < OR < 4,
patients in the treatment group are more likely to have outcomes of interest
than those in the control group. Note that 1 — OR is usually referred to as
relative odds reduction in the literature. Intuitively, OR can be estimated
by

PT(! -Pc)
pc (I ~PT)'

where PT and pc are the maximum likelihood estimators of PT and pc-,
respectively, given by

PT = — and pc = —, (4.6.1)

and XT and xc are the observed numbers of patients in the respective treat-
ment and control^groups who have the outcome of interest. The asymptotic
variance for \og(OR) can be obtained as

var[log(OR)] =
- PT) ncpc(± - Pc)'

which can be estimated by simply replacing PT and pc with their maximum
likelihood estimator PT and pc-
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4.6.1 Test for Equality

The hypotheses of interest are given by

H0:OR=1 versus Ha:OR^l.

The test statistic is given by

r i i -1-1/2
T = \og(OR) + -= —

[nTpT(l-pT) ncpc(l-pc)\

which approximately follows a standard normal distribution when HT and
HC are sufficiently large. Thus, we reject the null hypothesis that OR = 1
if \T\ > za/2- Under the alternative hypothesis that OR, ̂  1, the power of
the above test can be approximated by

/ r i i r1/2 "\
<£ I | log(Oj?)| 1 — Za/2 I •

\ \_nTpT'(1 •- PT) ncPc(]-~PC)\ I

As a result, the sample size needed for achieving a desired power of 1 — /3
can be obtained by solving

-1/2

- za/2 — z/3-

Under the assumption that riT/nc = K (& known ratio), we have

(4 6 2)
\og2(OR) \KPT(I-PT) Pc(l - PC

4.6.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H0:OR< 6' versus Ha : OR > 8',

where 8' is the non-inferiority or superiority margin in raw scale. The above
hypotheses are the same as

H0 : log(OR) < S versus Ha : log(OR) > 6,

where 8 is the non-inferiority or superiority margin in log-scale. When
8 > 0, the rejection of the null hypothesis indicates superiority over the
reference value. When S < 0, the rejection of the null hypothesis implies
non-inferiority against the reference value.



4.6. Relative Risk—Parallel Design 105

Let
-1/2

T=(log(OR)-S)'

We reject the null hypothesis at the a level of significance if T > za. Under
the alternative hypothesis that \og(OR] > 6, the power of the above test is
approximately

*((\og(OR)-6)\—-4—T+ l

nTpT(l - PT) ncpc(l - PC]
\ /

As a result, the sample size needed for achieving a desired power of 1 — /3
can be obtained by solving

1/2
| log(Ofl) - <5| - - - r + - -: - r - Za/2

- ncpc(l-Pc)

Under the assumption that n^jnc = ft, we have

= (Zq + Z0)
2 ( 1 __J__nc ' ( ' ' }

4.6.3 Test for Equivalence

To establish equivalence, the following hypotheses are usually considered

HQ : | log(OR)\ > 6 versus Ha : | log(O^)| < 6.

The above hypotheses can be tested using the two one-sided tests procedure
as described in previous sections. We reject the null hypothesis at a level
of significance if

* in

(iog(55)-J)L . ,! ,^+ l

and
r i i -1-1/2

(log(Ofl) + (5) _ . „ . . + _ . / t , . > za.

When | log(0.R)| < 6, the power of this test is approximately

2 / IQ OR r i | i i-1 x

Under the assumption that nT/nc — «, the sample size needed for achieving
a desired power of 1 — /3 is given by
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4.6.4 An Example

Suppose that a sponsor is interested in conducting a clinical trial to study
the relative risk between a test compound and a standard therapy for pre-
vention of relapse in subjects with schizophrenia and schizoaffective disor-
ders. Based on the results from a previous study with 365 subjects (i.e., 177
subjects received the test compound and 188 received the standard ther-
apy), about 25% (45/177) and 40% (75/188) of subjects receiving the test
compound and the standard therapy experienced relapse after the treat-
ment. Subjects who experienced first relapse may withdraw from the study
or continue on. Among the subjects who experienced the first relapse and
stayed on the study, about 26.7% (8/30) and 32.0% (16/50) experienced
the second relapse, the sponsor is interested in studying the odds ratio of
the test compound as compared to the standard therapy for prevention of
experiencing the first relapse. In addition, it also of interest to examine the
odds ratio for prevention of experiencing the second relapse.

Test for Equality

Assume the responder rate in test group is 25% and the rate in control
is 40%, which produces a relative risk

0.40(1-0.25)
(1-0.4)0.25

According to (4.6.2) and n — HT — nc (k = 1), the sample size needed in
order to achieve 80% (j3 = 0.2) at 0.05 (a = 0.05) level of significance is
given by

= (^0.025 + ZQ.2)2 \ 1 1 1 _

Iog2(2) [0.4(1 - 0.4) "*" 0.25(1 - 0.25) J ~ '

Test for Superiority

Assume that 20% (6 = 0.2) is considered as a clinically important su-
periority margin for log-scale relative risk. According to (4.7.2) the sample
size needed to achieve 80% power (/3 = 0.2) is given by

= (^0.05 + ZQ.2)2 [ 1 1 1

(log(2) - 0.2)2 [0.4(1 - 0.4) 0.25(1 - 0.25) J

Test for Equivalence

Assume that the relapse rate of the study drug (25%) is approximately
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equal to a market drug (\og(OR) — 0)and that the equivalence margin in
log-scale relative risk is 50% (6 — 0.50). According to (4.7.3) the sample
size needed to achieve 80% (j3 — 0.2) power to establish equivalence is given
by

= (^0.05 + ZQ.2/2)2 I" 1 1 1
n 0.52 [0.25(1-0.25) 0.25(1- 0.25) J

4.7 Relative Risk — Crossover Design

Consider a 1 x 2 crossover design with no period effects. Without loss of
generality, we assume that every subject will receive test first and then
crossovered to control. Let Xij be a binary response from the jth subject
in the ith period, j — 1, ...,n. The number of outcomes of interest under
treatment is given by XT = Y^l=i xij- The number of outcomes of interest
under control, xc, is similarly defined. Then the true response rates under
treatment and control can still be estimated according to (4.6.1). According
to Taylor's expansion, it can be shown that

t PT(I-PT) Pc(l-Pc}

where
lj-PT _ X2J-PC \

PT(!-PT) Pc(l-Pc})'

Let
, _ X2j
J

Then, a\ can be estimated by <r^, the sample variance based on d j , j =

4.T.1 Test for Equality

The hypotheses of interest are given by

HQ : \og(OR) = 0 versus Ha : log (OR) ^ 0.
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Under the null hypothesis, the test statistic

T^

approximately follows a standard normal distribution when UT and HC
are sufficiently large. Thus, we reject the null hypothesis that OR = 1 if
1^1 > za/2- Under the alternative hypothesis that OR 7^ 1, the power of
the above test can be approximated by

q> -- z

As a result, the sample size needed for achieving a desired power of 1 — j3
can be obtained by solving

This leads to

log2 (OR]

4.7.2 Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

#o : log(Ofl) < 6 versus Ha : log(Ofl) > (5,

where 6 is the non- inferiority or superiority margin in log-scale. When
8 > 0, the rejection of the null hypothesis indicates superiority over the
reference value. When 6 < 0, the rejection of the null hypothesis implies
non-inferiority against the reference value.

When log(O-R) = 6. the test statistic

T =

approximately follows the standard normal distribution when HT and HC
are sufficiently large. Thus, we reject the null hypothesis at the a level of
significance if T > za. Under the alternative hypothesis that log(OR) > 5,
the power of the above test is approximately

(log(OR)-6 .
i
V °d
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As a result, the sample size needed for achieving a desired power of 1 — (3
can be obtained by solving

log(OR) - 6
- - z — z .

It leads to
_ (za

4.7.3 Test for Equivalence

To establish equivalence, the following hypotheses are usually considered:

HQ : | \og(OR)\ > 6 versus Ha : | log(OR)| < 6.

The above hypotheses can be tested using the two one-sided tests procedure
(see, e.g., Chow and Liu, 1998). We reject the null hypothesis at the a level
of significance if

6)

and

When | \og(OR)\ < 5, the power of the above test is approximately

Then, the sample size needed for achieving a desired power of 1 — (3 can be
obtained by

4.8 Practical Issues

4.8.1 Exact and Asymptotic Tests

It should be noted that all of the formulas for sample size calculation given
in this chapter are derived based on asymptotic theory. In other words, the
formulas are valid when the sample size is sufficiently large. However, "how
large is considered sufficiently large" is always a question to researchers who
are trying to determine the sample size at the planning stage of an intended
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study. Unfortunately, there is no simple rule which can be used to evaluate
whether the sample size is sufficiently large. As an alternative, some exact
tests may be useful when the expected sample size of the intended study is
small (due to budget constraint and/or slow enrollment). Details of various
commonly used exact tests, such as binomial test, Fisher's exact test, and
multiple-stage optimal design will be discussed in the next chapter.

4.8.2 Variance Estimates

For testing equality, non-inferiority/superiority, and equivalence, the fol-
lowing test statistic is always considered:

ry. Pi - P2 + e
£l — -

where p\ and p2 are observed response rates from treatment 1 and treatment
2, respectively, and d is an estimate of the standard error cr, which is given
by

n2

Under the null hypothesis, Z is asymptotically normally distributed with
mean 0 and standard deviation 1. As an example, for testing non-inferiority
between an active treatment (treatment 1) and an active control (treatment
2), large Z values (i.e., treatment is better than control) favor the alterna-
tive hypothesis. Blackwelder (1982) recommended a2 be estimated by the
observed variance, which is given by

~ 2 PiC1 -Pi) , P2(l -Pz]a — -- h
n-2

In practice, however, a2 can be estimated by different methods. For ex-
ample, Dunnett and Gent (1977) proposed to estimate variance from fixed
marginal totals. The idea is to estimate p\ and p2 under the null hypothesis
restriction p\ — p2 = e, subject to the marginal totals remaining equal to
those observed. This approach leads to the estimates

Pi =

Pi =

~ / "'2 \ / *
Pi + — (P

i I 't2 \ / -
Pi + — (P2 -

1 | f.
± ~T~ —

As a result, an estimate of a can then be obtained based on p\ and p2- Tu
(1997) suggested cr2 be estimated by the unbiased observed variance

.2 Pi(! -Pi) , P2(l -P2),j — - -- 1 -- . — .
ni - 1 n2 - 1
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In addition, Miettinen and Nurminen (1985) and Farrington and Manning
(1990) considered estimating d1 using the constrained maximum likelihood
estimate (MLE) as follows

~2

where p\ and p2 are the constrained MLE of pi and p? under the null
hypothesis. As indicated in Farrington and Manning (1990), pi can be ob-
tained as the unique solution of the following maximum likelihood equation:

ax3 + bx2 + ex + d = 0,

where

1 , n2a = H -- ,

1 + — + 1] + £! + ( —
rii / \ni

d= -pie(l + e).

The solution is given by

pi = 2ucos(w] — 6/3a and p2 = Pi — e,

where

w = - [TT + cos~l(v/u3}] ,
o

v - 63/(3a)3 - 6c(6a2) + d/(2a),

M - sign(i;)[62/(3a)2 - c/(3a)]1/2.

Biswas, Chan, and Ghosh (2000) showed that the method of the constrained
MLE performs better than methods by Blackwelder (1982) and Dunnett
and Gent (1977) in terms of controlling type I error rate, power and con-
fidence interval coverage through a simulation study. The power function
(sample size calculation) is sensitive to the difference between true response
rates. A small difference (i.e., e ^ 0) will drop the power rapidly. Conse-
quently, a large sample size is required for achieving a desired power.

4.8.3 Stratified Analysis

In clinical research, stratified randomization is often employed to isolate
the possible confounding or interaction effects that may be caused by prog-
nostic factors (e.g., age, weight, disease status, and medical history) and/or
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non-prognostic factors (e.g., study center). Responses in these strata are ex-
pected to be similar and yet they may be systematically different or subject
to random fluctuation across strata. In the interest of a fair and reliable
assessment of the treatment difference, it is suggested that the stratified
analysis be performed. The purpose of the stratified analysis is to obtain
an unbiased estimate of treatment difference with a desired precision.

Stratified analysis can be performed based on Blackwelder's approach
or the method proposed by Miettinen and Nurminen (1985) and Farrington
and Manning (1990) by adapting different weights in each strata. In prac-
tice, several weights are commonly considered. These weights include (i)
equal weights, (ii) sample size, (iii) Cochran-Mantel-Haenszel, (iv) inverse
of variance, and (v) minimum risk. Suppose there are K strata. Let n^
be the sample size of the kth stratum in the zth treatment group and Wk
be the weight assigned to the fcth stratum, where k = l,...,K. Basically,
equal weights, i.e., Wk — w for all k imply that no weights are considered.
Intuitively, one may consider using the weight based on sample size, i.e.,

In other words, larger strata will carry more weights as compared to smaller
strata. Alternatively, we may consider the weight suggested by Cochran-
Mantel-Haenszel as follows:

Wk OC

These weights, however, do not take into consideration of the heterogeneity
of variability across strata. To overcome this problem, the weight based on
the inverse of variance for the kih stratum is useful, i.e.,

where a\ is the variance of the fcth stratum. The weight of minimum risk is
referred to as the weight that minimizes the mean squared error (Mehrotra
and Railkar, 2000).

Biswas, Chan, and Ghosh (2000) conducted a simulation study to com-
pare the relative performances of Blackwelder's approach and Miettinen
and Nurminen 's method with different weights for stratified analysis. The
results indicate that Cochran-Mantel-Haenszel weight for Miettinen and
Nurminen's method and minimum risk weight for Blackwelder's approach
perform very well even in the case of extreme proportions and/or the pres-
ence of interactions. Inverse variance weight is biased which leads to liberal
confidence interval coverage probability.
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4.8.4 Equivalence Test for More Than Two Propor-
tions

In clinical trials, it may be of interest to demonstrate therapeutic equiva-
lence among a group of drug products for treatment of certain disease under
study. In this case, a typical approach is to perform a pairwise equivalence
testing with or without adjusting the a level for multiple comparisons.
Suppose a clinical trial was conducted to establish therapeutic equivalence
among three drug products (A, B and C) for treatment of women with
advanced breast cancer. For a given equivalence limit, equivalence test can
be performed for testing (i) drug A versus drug B, (ii) drug A versus drug
C, and (iii) drug B versus drug C. It is very likely that we may conclude
that drug A is equivalent to drug B and drug B is equivalent to drug C
but drug A is not equivalent drug C based on pairwise comparison. In this
case, equivalence among the three drug products can not be established. As
an alternative approach, Wiens, Heyse, and Matthews (1996) consider the
following hypotheses for testing equivalence among a group of treatments:

HQ : max \pi — PJ\ > 8 versus Ha : max \pi — PJ\ < 5 .

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

HO : max Pi — max »? > S versus Ha : max Pi — max p» < 6 .
J 1<3<K J

Under the above hypotheses, formulas for sample size calculation can be
similarly derived.





Chapter 5

Exact Tests for
Proportions

In the previous chapter, formulas for sample size calculation for comparing
proportions were derived based on asymptotic approximations. In practice,
sample sizes for some clinical trials such as phase II cancer trials are usually
small and, hence, the formulas given in the previous chapter may not be
useful. In this chapter, our primary focus is placed on procedures for sample
size calculation based on exact tests for small samples. Unlike the tests
based on asymptotic distribution, the power functions of the exact tests
usually do not have explicit forms. Hence, exact formulas for sample size
calculation cannot be obtained. However, the sample size can be obtained
numerically by greedy search over the sample space.

In the next two sections, procedures for obtaining sample sizes based
on exact tests for comparing proportions such as the binomial test and
Fisher's exact test are discussed. In Section 5.3, procedures for sample size
calculation under various optimal multiple-stage designs such as an opti-
mal two-stage design, an optimal three-stage design and a flexible optimal
design for single-arm phase II cancer trials are given. Section 5.4 provides
procedures for sample size calculation under a flexible design for multiple
armed clinical trials. Some practical issues are presented in the last section.

5.1 Binomial Test

In this section, we describe the binomial test, which is probably the most
commonly used exact test for one-sample testing problem with binary re-
sponse in clinical research, and the related sample size calculation formula.

115
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5.1.1 The Procedure

The test for equality and non-inferiority/superiority can all be unified by
the following hypotheses:

HQ : p — PQ + 6 versus Ha:p — pi, (5.1.1)

where PQ is a predefined reference value and p\ > po + 6 is an unknown
proportion. When 6 = 0, (5.1.1) becomes the (one-sided) test for equality.
When 6 < 0 (6 > 0), it becomes the test for non-inferiority (superiority).
Let n be the sample size of a single arm clinical study and m be the number
of observed outcome of interest. When p = PQ = PQ + <5, m is distributed
as a binomial random variable with parameters (po,n). If the number of
the observed responses is greater than or equal to m, then it is considered
at least as favorable as the observed outcome of Ha. The probability of
observing these responses is defined as the exact p-value for the observed
outcome. In other words,

exact p-value = - L - > (1 - Po)»-.

For a given significance level a, there exists a nonnegative integer r (called
the critical value) such that

/ -J
i—r

and

i—r-l ^

We then reject the null hypothesis at the a level of significance if m > r.
Under the alternative hypothesis that p — p\ > po, the power of this test
can be evaluated as

P(m > r\Ha) =

For a given power, the sample size required for achieving a desired power
of 1 - J3 can be obtained by solving P(m > r\Ha) > 1 — j3.

Tables 5.1.1 and 5.1.2 provide sample sizes required for achieving a
desired power (80% or 90%) for p\ — PQ = 0.15 and p\ — Po = 0.20, respec-
tively. As an example, a sample size of 40 subjects is required for detection
of a 15% difference (i.e., p\ — po — 0.15) with a 90% power assuming that
po — 0.10. Note that with the selected sample size, we would reject the null
hypothesis that po = 0.10 at the a level of significance if there are 7 (out
of 40) responses.
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Table 5.1.1: Sample Size n and Critical Value r for Binomial Test

a Po

0.05 0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

0.10 0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Pi
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

1-0
r
3
7
11
16
21
26
30
35
38
41
45
43
41
39
38
27
2
5
8
12
15
19
21
24
28
31
31
32
33
29
25
22

= 80%
n
27
40
48
56
62
67
68
71
70
69
70
62
55
49
45
30
21
31
37
44
46
50
49
50
53
53
49
47
45
37
30
25

1-0
r
4
9
14
21
27
35
41
45
52
54
58
58
55
54
46
39
3
6
11
16
20
26
30
35
39
41
44
43
44
41
33
28

= 90%
n
38
55
64
77
83
93
96
94
98
93
92
85
75
69
55
44
32
40
53
61
64
71
72
75
75
72
71
64
61
53
40
32
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Table 5.1.2: Sample Size n and Critical Value r for Binomial Test
(Pi -po = 0.20)

a po
0.05 0.05

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

0.10 0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

Pi
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1-/5
r

2
5
7
11
13
16
19
22
24
23
25
26
24
23
20
13
2
3
5
7
9
12
13
15
16
17
19
17
16
17
13
10

' = 80%
N
16
25
28
35
36
39
41
42
42
37
37
36
31
28
23
14
16
18
22
24
26
30
29
30
29
28
29
24
21
21
15
11

1-13 = 90%
r
3
6
9
14
17
21
24
28
30
32
33
32
32
30
25
13
2
4
7
10
13
15
19
20
24
23
25
25
24
20
17
10

N
25
33
38
47
49
53
53
56
54
53
50
45
42
37
29
14
20
25
32
36
39
39
44
41
44
39
39
36
32
25
20
11
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5.1.2 Remarks

The exact p-value is well defined only if the sample distribution is com-
pletely specified under the null hypothesis. On the other hand, the test
for equivalence usually involves interval hypothesis, which means that, un-
der the null hypothesis, we only know the parameter of interest is located
within certain interval but are unaware of its exact value. As a result, the
distribution under the null hypothesis cannot be completely specified and,
hence, exact test is not well defined in such a situation.

5.1.3 An Example

Suppose the investigator is interested in conducting a trial to study the
treatment effect of a test compound in curing patients with certain type of
cancer. The responder is defined to be the subject who is completely cured
by the study treatment. According to literature, the standard therapy
available on the market can produce a cure rate of 10% (PQ = 10%). A pilot
study of the test compound shows that the test compound may produce
a cure rate of 30% (p\ = 30%). The objective of the planning trial is
to confirm such a difference truly exists. It is desirable to have a sample
size, which can produce 80% power at 5% level of significance. According to
Table 5.1.1, the total sample size needed is given by 25. The null hypothesis
should be rejected if there are at least 5 subjects who are classified as
responder.

5.2 Fisher's Exact Test

For comparing proportions between two treatment groups, the hypotheses
of interest are given by

HO : pi = P2 versus Ha : pi ^ p2,

where p\ and p? are the true proportions of treatment 1 and treatment 2,
respectively. Unlike the one-sample binomial test, under the null hypothesis
that pi = P2, the exact values of pi and p% are unknown. Hence, it is
impossible to track the marginal distribution of the events observed from
different treatment groups. In this case, a conditional test such as Fisher's
exact test is usually considered. In this section, we describe Fisher's exact
test and the related sample size calculation formula.
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5.2.1 The Procedure

Let mi be the number of responses observed in the zth treatment group.
Then, the total number of observed responses is m = m\ + m<2. Under the
null hypothesis that p\ — p2 and conditional on m, it can be shown that
mi follows a hypergeometric distribution with parameters (m, 711,712), i.e.,

P(m\ = i|m, 711,712) =

Til \ / 712

i ) \ m — i

I + n-2
m

Any outcomes with the same m but larger than mi would be considered at
least as favorable to Ha as the observed outcome. Then, the probability of
observing these outcomes, which is at least as observed, is defined as the
exact p-value. In other words,

. . . . . m -
exact p-value —

.^m, • "1
m

We reject the null hypothesis at the a level of significance when the exact
p-value is less than a. Under the alternative hypothesis that p\ ^ p% and
for a fixed n, the power of Fisher's exact test can be obtained by summing
the probabilities of all the outcomes such that the exact p-value is less than
a. However, it should be noted that no closed form exists for the power of
Fisher's exact test. As a result, sample size required for achieving a desired
power can only be obtained numerically such as by greedy search for all
possible outcomes.

Table 5.2.1 provides sample sizes required for achieving the desired
power (80% or 90%) under various parameters (i.e., P2 — p\ ranging from
0.10 to 0.35) when testing the null hypothesis that p\ = P2- As an example,
a sample size of 34 subjects is required for detection of a 25% difference
in proportion between treatment groups (i.e., p2 — Pi — 0.25) with an 80%
power assuming that pi — 0.15.

5.2.2 Remarks

For Fisher's exact test, the exact p-value is well defined only if the condi-
tional sample distribution is completely specified under the null hypothesis.
On the other side, the test for non-inferiority/superiority and equivalence
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Table 5.2.1: Sample Size for Fisher's Exact Test

P2-P1 Pi

0.25 0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

0.30 0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

0.35 0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60

P2

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

a = 0.
/3 = 0.20 /

25
31
34
39
40
41
41
41
41
40
39
34
31
25

20
23
26
28
29
29
33
29
29
28
26
23
16
19
20
23
24
24
24
24
23
20
19
16

10
3 = 0.10

33
41
48
52
56
57
57
57
57

56
52
48
41
33
26
32
35
39
40
40
40
40
40
39
35
32
21
24
28
29
29
33
33
29
29
28
24
21

a —
ft = 0.20

34
39
46
49
54
55
56
56
55
54
49
46
39
34
25
30
34
36
37
41
41
41
37
36
34
30
20
24
26
27
30
31
31
30
27
26
24
20

0.05
/3 = 0.10

42
52
60
65
71
72
77
77
72

71
65
60
52
42

33
39
45
47
51
53
53
53
51
47
45
39
25
31
34
36
36
40
40
36
36
34
31
25
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usually involves interval hypothesis, which means under the null hypothe-
sis, we only know the parameter of interest is located within certain interval
but unaware of its exact value. As a result, the distribution under the null
hypothesis can not be completely specified and, hence, Fisher's exact test
is not well defined in such a situation.

5.2.3 An Example

Suppose the investigator is interested in conducting a two-arm trial to study
the treatment effect of a test compound in preventing the relapse rate in
EAE score. The active control involved in the trial is a standard therapy
already available on market. It is assumed that the responder rates for
the test compound and the control are given by 10% (pi = 20%) and 35%
(p-2 = 35%), respectively. The objective of the planning trial is to confirm
such a difference truly exists. It is desirable to have a sample size, which
can produce 80% power at 5% level of significance. According to Table
5.2.1, the sample size needed per arm is given by 39.

5.3 Optimal Multiple-Stage Designs for Sin-
gle Arm Trials

In phase II cancer trials, it is undesirable to stop a study early when the
test drug is promising. On the other hand, it is desirable to terminate the
study as early as possible when the treatment is not effective. For this
purpose, an optimal multiple-stage design is often employed to determine
whether a study drug holds sufficient promise to warrant further testing. In
what follows, procedures for sample size calculation under various optimal
multiple-stage designs are introduced.

5.3.1 Optimal Two-Stage Designs

The concept of an optimal two-stage design is to permit early stopping when
a moderately long sequence of initial failures occurs. Denote the number
of subjects studied in the first and second stage by n\ and ri2, respectively.
Under a two-stage design, n\ patients are treated at the first stage. If
there are less than r\ responses, then stop the trial. Otherwise, stage 2
is implemented by including the other n<2 patients. A decision regarding
whether the test drug is a promising compound is then made based on
the response rate of the N — n\ -\- n^ subjects. Let po be the undesirable
response rate and jpibe the desirable response rate (p\ > PQ). If the response
rate of a test drug is at the undesirable level, one wishes to reject it as an
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ineffective compound with a high probability (or the false positive rate is
low), and if its response rate is at the desirable level, not to reject it as a
promising compound with a high probability (or the false negative rate is
low). As a result, it is of interest to test the following hypotheses:

HQ : p < PQ versus Ha :p>p\.

Rejection of HQ (or Ha) means that further (or no further) study of the
test drug should be carried out. Note that under the above hypotheses,
the usual type I error is the false positive rate in accepting an ineffective
drug and the type II error is the false negative rate in rejecting a promising
compound.

To select among possible two-stage designs with specific type I and type
II errors, Simon (1989) proposed to use the optimal design that achieves
the minimum expected sample size when the response rate is PQ. Let EN
be the expected sample size. Then, EN can be obtained as

EN = m + (1 - PET)n2,

where PET is the probability of early termination after the first stage,
which depends upon the true probability of response p. At the end of the
first stage, we would terminate the trial early and reject the test drug if r\
or fewer responses are observed. As a result, PET is given by

where B(-;p, ni) denotes the cumulative binomial distribution with param-
eter (p,ni). We would reject the test drug at the end of the second stage
if r or fewer responses are observed. Hence, the probability of rejecting the
test drug with success probability p is given by

min(ni ,r)

where 6(-;p,ni) denotes the binomial probability function with parameter
(p, n\). For specified values of po, P\-, &•, and (3, Simon's optimal two-stage
design can be obtained as the two-stage design that satisfies the error con-
straints and minimizes the expected sample size when the response proba-
bility is PQ. As an alternative design, Simon (1989) also proposed to seek
the minimum total sample size first and then achieve the minimum ex-
pected sample size for the fixed total sample size when the response rate is
PQ. This design is referred to as the minimax design.

Tables 5.3.1 and 5.3.2 provide sample sizes for optimal two-stage designs
and minimax designs for a variety of design parameters, respectively. The
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Table 5.3.1: Sample Sizes and Critical Values for Two-Stage Designs

Optimal Design

Po Pi
0.05 0.20

0.10 0.25

0.20 0.35

0.30 0.45

0.40 0.55

0.50 0.65

0.60 0.75

0.70 0.85

0.80 0.95

a
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05

0
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10

ri/ni
0/12
0/10
1/21
2/21
2/18
2/21
5/27
5/22
8/37
9/30
9/27
13/40
16/38
11/26
19/45
18/35
15/28
22/42
21/34
17/27
21/34
14/20
14/19
18/25
5/7
7/9
16/19

r/N
3/37
3/29
4/41
7/50
7/43
10/66
16/63
19/72
22/83
29/82
30/81
40/110
40/88
40/84
49/104
47/84
48/83
60/105
47/71
46/67
64/95
45/59
46/59
61/79
27/31
26/29
37/42

Minimax Design
ri/ni
0/13
0/13
1/29
2/27
2/22
3/31
6/33
6/31
8/42
16/50
16/46
27/77
18/45
28/59
24/62
19/40
39/66
28/57
25/43
18/30
48/72
15/22
16/23
33/44
5/7
7/9
31/35

r/N
3/32
3/27
4/38
6/40
7/40
9/55
15/58
15/53
21/77
25/69
25/65
33/88
34/73
34/70
45/94
41/72
40/68
54/93
43/64
43/62
57/84
40/52
39/49
53/68
27/31
26/29
35/40
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Table 5.3.2: Sample Sizes and Critical Values for Two-Stage Designs
(Pi -Po = 0.20)

Optimal Design

Po
0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

Pi a
0.25 0.10

0.05
0.05

0.30 0.10
0.05
0.05

0.40 0.10
0.05
0.05

0.50 0.10
0.05
0.05

0.60 0.10
0.05
0.05

0.70 0.10
0.05
0.05

0.80 0.10
0.05
0.05

0.90 0.10
0.05
0.05

0
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10

ri/rai
0/9
0/9
0/9
1/12
1/10
2/18
3/17
3/13
4/19
7/22
5/15
8/24
7/18
7/16
11/25
11/21
8/15
13/24
6/11
7/11
12/19
6/9
4/6
11/15

r/n
2/24
2/17
3/30
5/35
5/29
6/35
10/37
12/43
15/54
17/46
18/46
24/63
22/46
23/46
32/66
26/45
26/43
35/61
26/38
30/43
37/53
22/28
22/27

29/36

Minimax Design

ri/ni
0/13
0/12
0/15
1/16
1/15
2/22
3/19
4/18
5/24
7/28
6/19
7/24
11/28
17/34
12/29
11/23
12/23
14/27
18/27
8/13
15/26
11/16
19/23
13/18

r/n
2/20
2/16
3/25
4/25
5/25
6/33
10/36
10/33
13/45
15/39
16/39
21/53
20/41
20/39
27/54

23/39
23/37
32/53
14/35
25/35
32/45
20/25
21/26
26/32
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tabulated results include the optimal sample size n\ for the first stage, the
maximum sample size n, the critical value r\ at the end of the first stage,
and the critical value r at the end of the trial. For example, the first line
in Table 5.3.2 corresponds to a design with p0 — 0.20 and p\ = 0.40. The
optimal two-stage design gives (ri/n\,r/n) = (3/13,12/43) for achieving
an 80% power at the 5% level of significance, i.e., (a, 3) = (0.05,0.20). In
other words, at the first stage, thirteen subjects are tested. If no more than
3 subjects respond, then terminate the trial. Otherwise, accrual continues
to a total of 43 subjects. We would conclude that the test drug is effective
if there are more than 12 (out of 43 subjects) responses.

5.3.2 Flexible Two-Stage Designs

Chen and Ng (1998) proposed optimal multiple-stage flexible designs for
phase II trials by simply assuming that the sample sizes are uniformly
distributed on a set of k consecutive possible values. As an example, the
procedure for obtaining an optimal two-stage flexible design is outlined
below.

Let Ti and n^ be the critical value and the sample size for the first stage
and RJ and Nj be the critical value and sample size for the second stage.
Thus, for a given combination of (m, A^), the expected sample size is given
by

EN = n, + (1 - PET)(Nj - m),

where
PET = B(rv,p,ni) = ̂  b(x;p,m).

£<ri

The probability of rejecting the test drug is then given by

niin(rii ,Rj)

B(ri;p, n^ -f b(x;p, nl)B(Rj - x\p, Nj - Hi).

The average probability of an early termination (APET] is the average
of PET for all possible n^. The average total probability of rejecting the
test drug (ATPRT) is the average of the above probability for all possible
combinations of ( n ^ N j } . The average expected sample size (AEN) is the
average of EN. Chen and Ng (1998) considered the following criteria for
obtaining an optimal flexible design. If the true response rate is po, we reject
the test drug with a very high probability (i.e., ATPRT > 1 — a). If the true
response rate is pi, we reject the test drug with a very low probability (i.e.,
ATPRT < 3). There are many solutions of (r^rt^, jRj, Nj)'s that satisfy
the a and [3 requirements for the specific po and p\ . The optimal design is
the one that has minimum AEN when p — PQ. The minimax design is the
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one that has the minimum Nk and the minimum AEN within this fixed
Nk whenp = p0.

Tables 5.3.3-5.3.4 and Tables 5.3.5-5.3.6 provide sample sizes for flexible
two-stage designs and minimax designs for a variety of design parameters,
respectively. The tabulated results include the optimal sample size rii and
the critical value TJ for the first stage and the total sample size Nj and
critical value Rj at the end of the second stage. For example, the second
line in Table 5.3.3 corresponds to a design with PQ — 0.10 and p\ = 0.30.
The flexible two-stage design gives 1/11-17, 2/18 for the first stage and
3/24, 4/25-28, 5/29-31 for the second stage for achieving a 90% power at
the 10% level of significance. The optimal flexible two-stage design allows
the first stage sample size to range from 11 (n\) to 18 (ng). The critical
value Ti is 1 if n» ranges from 11 to 17, and 2 if n» is 18. If the observed
responses are greater than r^, we accrue 27 — rij additional subjects at the
second stage. The flexible optimal two-stage design allows the total sample
size to range from 24 (N\) to 31 (Ns). The rejection boundary Rj is 3 if
NJ is 24, 4 if Nj ranges from 25 to 28, and 5 if Nj ranges from 29 to 31.

5.3.3 Optimal Three-Stage Designs

The advantage of a two-stage design is that it does not allow early ter-
mination if there is a long run of failures at the start. To overcome this
disadvantage, Ensign et al. (1994) proposed an optimal three-stage de-
sign, which modifies the optimal two-stage design. The optimal three-stage
design is implemented by testing the following similar hypotheses:

HQ : p < po versus Ha:p>pi.

Rejection of HQ (or Ha) means that further (or not further) study of the test
drug should be carried out. At stage 1, ni patients are treated. We would
reject Ha (i.e., the test treatment is not responding) and stop the trial
if there is no response. If there are one or more responses, then proceed
to stage 2 by including additional n-2 patients. We would reject Ha and
stop the trial if the total number of responses is less than or equal to a
pre-specified number of r^ otherwise continue to stage 3. At stage 3, n^
more patients are treated. We would reject Ha if the total responses for the
three stages combined is less than or equal to r%. In this case, we conclude
the test drug is ineffective. On the other hand, if there are more than fs
responses, we reject HQ and conclude the test drug is effective. Based on
the concept of the above three-stage design, Ensign et al. (1994) considered
the following to determine the sample size. For each value of n\ satisfying
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Table 5.3.3: Sample Sizes and Critical Values for Optimal Flexible
Two-Stage Designs (p\ — po=0.15)

Po
0.05

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Pi a

0.20 0.10

0.05

0.05

0.25 0.10

0.05

0.05
0.35 0.10

0.05

0.05

0.45 0.10

0.05

0.05

0.55 0.10

0.05

0.05

0.65 0.10

0.05

0.05

0.75 0.10

0.05

0.05

0.85 0.10

0.05

0.05

0.95 0.10

0.05

0.05

/3
0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.20

0.10

0.20

0.20

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20
0.10

0.10

0.20

0.10

0.10

0.20

0.10

fi/Hi

0/15-16,1/17-22

0/10-12,1/13-17

1/17-24

2/19-25,3/26

1/13-15,2/16-20

2/21-24,3/25-28

6/28-31,7/32-35

4/18-21,5/22-24,6/25

6/31,7/32-34,8/35-38

9/31,10/32-33

11/34-37,12/38

7/23,8/24-25,

9/26-29,10/30

11/35-36,12/37-39,

13/40-42

12/30-31,13/32-33,

14/34-35,15/36-37

11/25-26,12/27-29,

13/30-31,14/32

16/38-39,17/40-41,

18/42-44,19/45

15/30,16/31-32,17/33-34,

18/35-36,19/37

12/23,13/24-25,14/26-27,

15/28-29,16/30

21/40,22/41-42,23/43-44,

24/45-46,25/47

16/27,17/28,18/29-30,

19/31-32,20/33,21/34

14/22-23,15/24,16/25

20/32-33,21/34,22/36-36,

23/37/24/38-39

13/19,14/20,15/21,

16/22-23,17/24,18/25-26

9/13,10/14,11/15,12/16-17,

13/18,14/19,15/20

17/24.18/26,19/26,

20/27-28,21/29,22/30,

23/31

8/10,9/11,10/12-13,

11/14,12/15,13/16,14/17

7/9,8/10,9/11,10/12,

11/13,12/14,13/15,14/16

10/12,11/13-14,12/15,

13/16,14/17,15/18,16/19

Rj/Nj
2/30-31,3/32-37

3/27-34

4/41-46,5/47-48

6/44-45,7/46-51

6/40,7/41-45,8/46-47

9/57-61,10/62-64

15/62,16/63-65,

17/66-68,18/69

17/62-64,18/65-69,

22/82-85,23/86-89

27/75-77,28/78-80

29/81-82

27/73,28/74-76,

29/77-78,30/79-80

36/98-99,37/100-102,

38/103-104,39/105

37/80-81,38/82-84,

39/85-86,40/87

37/78,38/79-80,

39/81-82,40/83-85

49/104-105,50/106-107,

51/108-109,52/110-111

44/78-79,45/80-81,

46/82-83,47/84,48/85

45/77-78,46/79-80,

47/81-82,48/83,49/84

59/103-104,60/105-106,

61/107,62/108-109,63/110

44/67,45/68,46/69-70,

47/71,48/72,49/73-74

46/68,47/69,48/70-71

61/90-91,62/92,63/93-94,

64/95,65/96-97

40/53,41/54,42/55,43/56,

44/57-58,45/59,46/60

44/56-57,45/58,46/59,

47/60,48/61-62,49/63

57/73-74,58/75,59/76-77,

60/78,61/79,62/80

24/28,25/29,26/30,27/31,

28/32,29/33,30/34-35

25/28,26/29,27/30,

28/31-32,29/33,30/34,

31/35

35/40,36/41 ,37/42,38/43,

39/44,40/45-46,41/47
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Table 5.3.4: Sample Sizes and Critical Values for Optimal Flexible
Two-Stage Designs (p\ — po=0.20)

Po
0.05

0.10

Pi
0.25

0.30

a
0.10
0.05
0.05

0.10
0.05
0.05

0
0.10
0.20
0.10

0.10
0.20
0.10

TijUi

0/8-13,1/14-15
0/5-10,1/11-12
0/8-13,1/14-15

1/11-17,2/18
1/8-12,2/13-15
1/12-14,2/15-19

Rj/Nj
1/18,2/19-25

2/17-22,3/23-24
2/24,3/25-31

3/24,4/25-28,5/29-31
4/26,5/27-32,6/33
6/36-39,7/40-43

0.20 0.40 0.10 0.10
0.05 0.20
0.05 0.10

0.30 0.50 0.10 0.10

0.05 0.20

0.05 0.10

0.40 0.60 0.10 0.10

0.05 0.20

0.05 0.10

0.50 0.70 0.10 0.10

0.05 0.20

0.05 0.10

0.60 0.80 0.10 0.10

0.05 0.20

0.05 0.10

0.70 0.90 0.10 0.10

0.05 0.20

0.05 0.10

2/14,3/15-17,4/18-21
2/10-12,3/13-15,4/16-17

4/18-20,5/21-24,6/25

4/14-16,5/17-19,
6/20-21

3/11,4/12-14,
5/15-16/6/17-18
6/19-20,7/21-23,

8/24-26

6/15-16,7/17-19,
8/20,9/21-22
5/12-13,6/14,

7/15-16,8/17-19
8/20,9/21-22,10/23-24,

11/25-26,12/27

7/15,8/16-17,9/18,
10/19-20,11/21,12/22

5/10,6/11-12,
7/13-14,8/15,9/16-17

10/19-20,11/21,
12/22-23,13/24-25,14/26

7/12,8/13-14,9/15,
10/16-17,11/18,12/19

5/8-9,6/10,7/11,
8/12-13,9/14-15

11/17-18,12/19,13/20-21,
14/22,15/23,16/24

6/9,7/10,8/11,9/12-13,
10/14,11/15-16

4/6,5/7,6/8,7/9,
8/10-11,9/12,10/13
7/10,8/11,9/12-13,

10/14,11/15,12/16,13/17

9/35-36,10/37-38,11/39-42
10/33-35,11/36-40

13/48,14/49-51,15/52-55

15/40-41,16/42-44,
17/45-46,18/47

16/40-41,16/42-44,
18/45-46,18/47
21/55,22/56-58,
23/59-60,24/61-62

21/44-45,22/46-47,
23/48-49,24/50-51

22/44-45,23/46-47,24/48-49,
25/50,26/51

28/58,29/59-60,30/61-62,
31/63,32/64-65

24/41-42,25/43/44,
26/45,27/46-47,28/48
25/42,26/43-44,27-45,
28/46-47,29/48,30/49
33/55-56,34/57-58,
35/59,36/60-61,37/62

24/35-36,25/37,26/38
27/39-40,28/41,29/42
25/35-36,26/37,27/38,
28/39-40,29/41,30/42
34/48-49,35/50-51,
36/52,37/53-54,38/55

18/23,19/24,20/25-26,
21/27,22/28,23/29,24/30
22/27,23/28-29,24/30,
25/31,26/32-33,27/34

27/34/28/35,29/36,30/37-38,
31/39,32/40,33/41
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Table 5.3.5: Sample Sizes and Critical Values for Minimax Flexible
Two-Stage Designs (p\ — PQ—0.15)

Po
0.05

0.10

0.20

0.30

Pi Q
0.20 0.10

0.05
0.05

0.25 0.10
0.05
0.05

0.35 0.10
0.05
0.05

0.45 0.10

0.05

0.05

0
0.10
0.20
0.10

0.10
0.20
0.10

0.10
0.20
0.10

0.10

0.20

0.10

Ti/ni

0/16-22,1/23
0/10-17

0/22-27,1/28-29

1/25-27,2/28-32
1/22-24,2/25-29
2/25-29,3/30-32

6/37-39,7/40-42,8/43-440
6/28,6/29-31,7/32-35

8/41-45,9/46-48

11/43,12/44-46
13/47-48,14/49-50

10/36,11/37,
12/38-39,13/40-43
15/50-52,16/53-55,

17/56-57

R j / N j
2/26-28,3/29-33

2/23,2/24-30
3/33-34,4/35-40

5/37,6/38-42,7/43-44
6/33-37,7/38-40
8/49-52,9/53-56

14/54-55,15/56-59,16/60-61
14/50-51,15/52-54,16/55-57
19/71-72,20/73-74,21/75-78

23/64,24/65-67,
25/68-69,26/70-71

23/60,24/61-63,
25/64-65,26/66-67
32/85-86,33/87-89,

34/90-91,35/92

0.40 0.55 0.10 0.10

0.05 0.20

0.05 0.10

0.50 0.65 0.10 0.10

0.05 0.20

0.05 0.10

0.60 0.75 0.10 0.10

0.05 0.20

0.05 0.10

0.70 0.85 0.10 0.10

0.05 0.20

0.05 0.10

0.80 0.95 0.10 0.10

0.05 0.20

0.05 0.10

16/43-44,17/45-46,

18/47,19/48-49,20/50

13/34-35,14/36,

15/37-39,16/40-41

23/60-61,24/62-63,

25/64-65,26/66-67

19/41,20/42-43,

21/44-45,22/57-57,23/48

16/33,17/34-35,

18/36-37,19/38-39,20/40

26/53,27/54-55,28/56,

29/57,30/58-59,31/60

22/38-39,23/40,24/41-42,

25/43,26/44-45

18/31,19/32,20/33-34,

21/35,22/36-37,23/38
23/39,24/40-41,25/42-43,

26/44,27/45,28/46

19/28-29,20/30,21/31,

22/32,23/33-34,24/35

18/25,19/26,20/27-28,

21/29,22/30,23/31,24/32

26/38,27/39,28/40,29/41,

30/42-43,31/44/32/45

9/12,10/13,11/14,12/15,

13/16,14/17,15/18,16/19

6/8,7/9,8/10,9/11,
10/12-13,11/14,12/15

22/26,23/27,24/28,25/29,

26/30,27/31,28/32,29/33

32/69-70,33/71,

34/72-73,35/74-75,36/76

32/65-66,33/67-68,

34/69-70,35/71,36/72

43/91,44/92-93,

45/94,46/95-96,47/97-98

38/67,39/68-69,40/70-71,

41/72,42/73-74

38/64-65,39/66,

40/67-68,41/69,42/70-71

52/89-90,53/91-92,

54/93-94,55/95,56/96

40/60,41/61,42/62-63,

43/64,44/65-66,45/67
40/57-58,41/59,

42/60-61,43/62,44/63-64
54/80,55/81,56/82,

57/83-84,58/85,59/86-87

36/46-47,37/48,38/49,

39/50-51,40/52,41/53

36/45,37/46-47,38/48,

39/49,40/50-51,41/52

48/62,49/63,50/64,51/65,

52/66,53/67,54/68-69

23/26,24/27-28,25/29,

26/30,27/31,28/32,29/33

23/26,24/27,25/28,26/29,
27/30,28/31,29/32,30/33

31/35,32/36,33/37,34/38,

35/39-40,36/41,37/42
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Table 5.3.6: Sample Sizes and Critical Values for Minimax Flexible
Two-Stage Designs (p\ — po=0.20)

Po
0.05

Pi
0.25

a
0.10
0.05
0.05

0
0.10
0.20
0.10

Ti/rn
0/8-15

0/6-12,1/13
0/10-16,1/17

Rj/Nj
1/17,2/18-24

2/14-21
2/21-22,3/23-28

0.10 0.30 0.10 0.10
0.05 0.20
0.05 0.10

0.20 0.40 0.10 0.10

0.05 0.20
0.05 0.10

0.30 0.50 0.10 0.10

0.05 0.20

0.05 0.10

0.40 0.60 0.10 0.10

0.05 0.20

0.05 0.10

0.50 0.70 0.10 0.10

0.05 0.20

0.05 0.10

0.60 0.80 0.10 0.10

0.05 0.20

0.05 0.10

0.70 0.90 0.10 0.10

0.05 0.20

0.05 0.10

0/11-13,1/14-18
0/11-14,1/15-18

1/17-20,2/21-23,3/24

3/22-23,4/24,
5/25-27,6/28-29

2/14,3/15-18,4/19-21
5/27-29,11/40,12/41-42,

6/30-32,7/33-34

6/24-25,7/26-29,
8/30,9/31

5/18-19,6/20-22,14/33-35,
15/36-37,7/23-24,8/25
7/27,8/28-29,19/47-49,

20/50-51,9/30-31,10/32-34

8/23-24,9/25-26,
10/27,11/28-29,12/30
6/18,7/19-20,8/21-22,

9/23,10/24-25
10/26-27,11/28,

12/29-31,13/32-33

8/18,9/19-20,10/21,
11/22-23,12/24,13/25
7/15,8/16-17,9/18-19,

10/20,11/21,12/22
14/30-31,15/32,16/33-34,

17/35,18/36,19/37

9/17-18,10/19,11/20,
12/21,13/22-23,14/24

6/11,7/12-13,8/14,
9/15-16,10/17,11/18

11/19,12/20-21,
13/22,14/23,15/24-26

5/8,6/9,7/10-11,8/12,
9/13,10/14-15

5/8,6/9,7/10,8/11,
9/12-13,10/14,11/15

8/12,9/13,10/14,11/15,
12/16-17,13/18,14/19

3/22-23,4/24-26,5/27-29

3/19,4/20-22,5/23-26

5/28-30,6/31-35

8/30-31,9/32/33,

10/34-37

9/28-31,10/32-34,11/35

13/43-45,14/46-47

13/35,14/36-37,

15/38-40,16/41-42

16/38-39,17/40

21/52-53,22/54

18/37-38,19/39-40,

20/41,21/42-43,22/44

18/35-36,19/37,

20/38-39,21/40,22/41-42

25/50-51,26/52,

27/53-54,28/55-56,29/57

21/36,22/37-38,23/39,

24/40-41,25/42-43

21/34,22/35-36,23/37-38,

24/39,25/40,26/41

18/47,29/48,30/49-50,
31/51,32/52-53,33/54

21/30-31,22/32,23/33,

24/34-35,25/36,26/37

21/29,22/30-31,23/32,

24/33,25/34-35,26/36

29/41,30/42-43,31/44,

32/45,33/46-47,34/48

17/22,18/23,19/24,20/25,

21/26,22/27-28,23/29

17/21,18/22,19/23,20/24,

21/25,22/26-27,23/28

24/30,35/31,26/32,27/33,
28/34-35,29/36,30/37
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where
/3 = P(reject Ha | pi),

computing the values of r2 , 712 , r$ , and n3 that minimize the null expected
sample size EN(po) subject to the error constraints a and /5, where

EN(p] = m + n2{l - ft(p)} + n3{l - ft(p)

and /3i are the probability of making type II error evaluated at stage i.
Ensign et al. (1994) use the value of

as the type II error rate in the optimization along with type I error

a = F(reject H0 \ pQ)

to obtain r^.n^.r^, and n^. Repeating this, HI can then be chosen to mini-
mize the overall EN(po}.

Tables 5.3.7 and 5.3.8 provide sample sizes for optimal three-stage de-
signs based on the method proposed by Ensign et al. (1994) for a variety
of design parameters. The tabulated results include the optimal size n«
and the critical value rx of the ith stage. For example, the result in Ta-
ble 5.3.7 corresponding to a design with PQ = 0.25 and pi = 0.40 gives
0/6. 7/26, 24/75 for achieving an 80% power at the 5% level of significance.
In other words, at the first stage, six subjects are treated. If there is no
response, then the trial is terminated. Otherwise, accrual continues to a
total of 26 subjects at the second stage. If there are no more than 7 sub-
jects respond, then stop the trial. Otherwise, proceed to the third stage by
recruiting 49 additional subjects. We would conclude that the test drug is
effective if there are more than 24 responses for the subjects in the three
stages combined.

Note that the optimal three-stage designs proposed by Ensign et al.
(1994) restrict the rejection region in the first stage to be zero response,
and the sample size to at least 5. As an alternative, Chen (1997b) also
extended Simon's two-stage to a three-stage design without these restric-
tions. As a result, sample sizes can be obtained by computing the values
of r i ,n i ,7 '2 ,7 i2 , r'3, and 773 that minimize the expected sample size

EN = m + (1 - PET^n'2 + (1 - PETaii)n3

PET, = B(ri-ni,p) = ^2 *>fam,P)
x<r\

min(ni ,r2)

PETaii = PETi + b(d;n,p)B(r2 - x;n2,p}.
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Table 5.3.7: Sample Sizes n* and Critical Values T{ for Optimal
Three-Stage Designs - Ensign et al. (1994) (p\ — po = 0.15)

Po
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pi
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

a
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05

0
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.20
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10

Stage 1

0/12
0/10
0/14
0/11
0/9
0/13
0/12
0/9
0/13
0/11
0/6
0/9
0/8
0/6
0/9
0/7
0/7
0/9
0/9
0/5
0/8
0/11
0/5
0/10
0/6
0/5
0/6
0/5
0/5
0/6
0/7
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5

Stage 2

1/25
2/24
2/29
3/29
3/25
3/27
4/28
5/27
6/35
7/34
6/28
10/44
8/32
7/26
11/41
13/41
9/27
14/43
12/34
12/31
17/45
16/38
14/32
19/45
15/34
12/25
20/42
16/32
12/25
20/42
19/34
15/26
23/40
21/34
13/21
14/23
17/26
12/18
8/13
14/20
14/19
12/17
16/21
10/13
8/11
5/7
7/9
8/10

Stage 3

3/38
3/31
4/43
7/50
7/43
10/66
11/55
12/56
16/77
16/63
18/67
23/88
23/76
24/75
30/95
28/79
31/84
38/104
33/81
37/88
45/108
40/88
40/84
49/104
40/78
47/90
59/114
46.84
47/90
59/114
46/75
48/76
64/96
47/71
49/72
90/98
47/66
49/67
74/78
45/59
46/59
68/72
36/44
40/48
55/57
27/31
26/29
44/45
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Table 5.3.8: Sample Sizes HI and Critical Values rl for Optimal
Three-Stage Designs - Ensign et al. (1994) (pl - p0 = 0.20)

Po Pi
0.05 0.25

0.10 0.30

0.15 0.35

0.20 0.40

0.25 0.45

0.30 0.50

0.35 0.55

0.40 0.60

0.45 0.65

0.50 0.70

0.55 0.75

0.60 0.80

0.65 0.85

0.70 0.90

0.75 0.95

a
0.10

0.05

0.05

0.10
0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10
0.05

0.05

0.10

0.05
0.05

0.10

0.05

0.05
0.10

0.05

0.05

0.10
0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05
0.10

0.05

0.05

0.10

0.05
0.05

0.10

0.05

0.05
0.10

0.05

0.05

0
0.10
0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10
0.20

0.10

0.10

0.20
0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10
0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10
0.10

0.20

0.10

0.10
0.20

0.20

0.10

0.20

0.10

0.10

0.20

0.10

Stage 1

0/9
0/7
0/9
0/10

0/6
0/9
0/9
0/5
0/9
0/8
0/5
0/9
0/6
0/5
0/7
0/6
0/5
0/8
0/6
0/6
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5
0/5

Stage 2
ri / (n\ + n-z) r

1/19
1/15
1/22
2/19
2/17
3/22
2/16
3/17
4/23
3/16
4/17
4/23
6/23
5/17
6/22
6/20
5/15
8/24
7/20
8/20
10/26
8/20
7/16
9/22
10/21
7/15
15/30
11/21

8/15
12/23
10/18
9/15
10/18
6/11
7/11
12/19
10/15
10/14
10/15
6/9
4/6
11/15
6/8
9/11
7/9

Stage 3

'3/(ni + n2 + n3)
2/25
3/26
3/30
4/26
5/29
7/45
7/33
9/41
10/44
11/42
12/43
15/54
14/44
16/48
20/61
17/46
19/49
24/63
20/47
19/42
29/67
22/46

24/48
30/61
26/50
24/43
32/59
26/45

26/43

34/57
26/41
28/43
35/54
26/38
30/43
37/53
25/34
25/33
33/44

22/28
22/27
29/36
16/19
19/22
24/28
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Table 5.3.9: Sample Sizes n« and Critical Values ri for Optimal
Three-Stage Designs - Chen (1997b) (pi - p0 = 0.15)

PO
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pi
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

a
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05

0
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.20
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10

Stage 1

0/13
0/10
0/14
1/17
1/13
1/17
2/20
2/15
3/23
3/21
3/17
5/27
4/20
4/17
6/26
6/24
5/18
8/29
7/23
6/19
9/28
7/21
7/19
12/31
12/28
8/19
13/30
10/22
8/17
14/29
13/25
7/14
15/28
11/20
8/14
14/24
11/18
8/13
16/25
14/20
4/7
12/18
10/14
9/12
10/14
5/7
2/3
6/8

Stage 2
ri/(n\ + na) r

1/22
1/19
2/29
3/29
3/24
4/34
5/33
6/33
8/46
8/37
9/37
11/49
10/39
12/42
15/54
14/44
14/41
19/57
18/49
17/43
23/60
19/46
19/43
28/64
27/56
21/42
29/60
25/48
21/39
34/63
25/44
23/39
36/61
26/42
23/36
36/56
27/40
27/38
35/50
18/37
11/16
28/38
23/29
21/26
23/29
16/19
16/19
24/28

Stage 3

3/37
3/30
4/43
7/50
8/53
10/66
11/55
13/62
16/77
17/68
18/68
23/88
24/80
25/79
32/103
28/79
31/84
38/104
34/84
34/80
45/108
38/83
39/82
54/116
43/85
45/86
58/112
48/86
49/85
62/109
47/77
49/78
65/105
57/71
52/77
70/105
49/69
52/72
66/92
45/59
44/56
58/75
38/47
39/47
55/67
30/35
35/40
41/47
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Table 5.3.10: Sample Sizes HI and Critical Values rt for Optimal
Three-Stage Designs - Chen (1997b) (pi - po = 0.20)

Po
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Pi
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

a
0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10
0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0
0.10

0.20
0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10
0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10
0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.20

0.10

0.20

0.10

0.10

0.20

0.10

Stage 1 Stage 2 Stage 3

ri/rii r2/(ni+n2) r3/(ni + n2 + n3)

0/9
0/8
0/10

0/10

0/6
1/13

1/12

1/9
2/15

1/10

1/8
3/17

3/16

2/10

4/18

3/13

3/11

4/16

6/18

3/10

6/18

7/18

3/9
6/16

5/13

3/8
6/15

4/10

4/9
7/15

5/11

6/11

7/14
6/11

5/9
6/11

5/9
5/8
6/10

5/8
3/5
6/9
3/5
1/2
6/8

1/18

1/13
1/17

2/19

2/17

3/23

3/21

4/21

5/27

6/26

5/22

7/30

7/25

6/20

10/33

9/28

7/21

11/32

13/33

9/23

15/38

9/26

10/23

17/38

13/27

10/20
17/34

12/24

13/23

19/34

12/21

14/23

16/27

14/22

12/48

19/29

13/19

13/18

16/23

11/15

10/13

16/21

6/8
9/11

13/16

2/26

2/19

3/30

4/26

5/29

7/45

7/33

8/35

11/51

11/43

11/38

14/50

13/41

16/48

19/58

17/46

18/46

23/60

20/48

21/47

27/62

22/46

23/46

32/66

26/50

29/54

34/63

26/45

29/49

38/65

27/43

28/43

36/56

29/43
28/40

38/55
25/34

27/36

35/47

22/28

25/31

31/39

16/19

19/22

24/28
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Table 5.3.11: Sample Sizes HI and Critical Values TI for Minimax
Three-Stage Designs - Chen (1997b) (pi - p0 = 0.15)

Po
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pi
0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

a
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05
0.10
0.05
0.05

0
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.20
0.10
0.20
0.10
0.10
0.20
0.10
0.10
0.20
0.10

Stage 1

0/18
0/14
0/23
1/23
1/17
1/21
2/23
2/19
4/35
5/30
3/22
16/65
6/31
7/30
9/47
7/29
8/29
12/46
12/39
10/33
11/36
10/30
13/33
20/55
18/41
13/32
26/58
19/40
18/36
19/43
23/43
18/33
23/43
19/35
19/32
18/46
22/33
16/26
25/41
15/22
11/17
13/20
11/17
8/12
12/17
1/3
7/9
16/20

Stage 2
J-2/(ni +n2) r:

1/26
1/20
1/30
3/33
3/30
4/39
5/36
6/36
8/51
9/45
7/35
19/72
11/46
12/42
17/67
16/51
14/42
25/73
20/57
18/48
22/60
19/48
30/63
32/77
35/69
25/53
47/90
24/64
36/62
34/67
36/60
41/64
42/84
30/50
40/58
50/75
26/41
27/40
37/56
18/37
16/24
31/42
22/29
16/21
23/30
17/20
16/19
31/35

Stage 3

3/32
3/27
4/38
6/40
7/40
9/55
11/53
11/48
14/64
15/58
15/53
20/74
20/64
20/60
27/83
25/69
25/65
33/88
30/72
29/66
40/94
34/73
34/70
45/94
38/74
38/70
50/95
41/72
40/68
54/93
42/68
42/66
45/89
43/64
42/61
57/84
43/60
41/55
55/75
40/52
39/49
43/68
33/40
33/39
45/54
26/30
26/29
35/40
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Table 5.3.12: Sample Sizes rii and Critical Values r^ for Minimax
Three-Stage Designs - Chen (1997b) (pi - po = 0.20)

Po
0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Pi
0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

a

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10
0.05

0.05

0.10

0.05
0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0.10
0.05

0.05

0.10

0.05

0.05

0.10

0.05

0.05

0
0.10

0.20

0.10

0.10

0.20
0.10

0.10

0.20
0.10

0.10

0.20

0.10

0.10
0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10
0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10

0.20

0.10

0.10
0.20

0.20

0.10

0.20

0.10

0.10

0.20

0.10

Stage 1

0/13

0/12

0/15

0/12

0/11
0/14

1/13

1/12

1/16

2/16

2/13

2/16

3/18
3/15

4/21

6/26

3/13

5/20

2/11

4/14
10/34

5/17

4/12

7/20

6/16
6/15

15/32

7/17

7/16

8/18

13/23

8/15

12/22

8/15

9/15

15/26

4/8
6/10

16/24

5/9
4/7
5/9
3/5
6/8
9/12

Stage 2

1/18

1/15

1/21

1/16
2/19

2/22

3/22

3/19

4/28

5/26

5/22

6/28
8/31

6/23

9/35

11/35
8/24

12/36

10/27

9/24
17/45

9/26

11/25

17/39
13/29

12/24

28/51

14/28

13/25

18/34

22/35

14/23

21/35

14/22

23/32

24/37

11/17
13/18

28/37

13/18

19/23

12/17

6/8
14/16

19/22

Stage 3

r3/(n\ + ri2 + na)

2/20

2/16

3/25

4/25

5/25
6/33

7/32

7/28

9/38

10/36

10/33

13/45

13/39

13/36

17/45

15/39

16/39

21/53

18/42

18/39

24/53

20/41

21/41

27/54

22/41

22/39

29/53

23/39

23/37

32/53

24/38

24/36

32/49

24/35

24/34

32/45

23/31
23/30

30/40

20/25

20/25

26/32

16/19

17/20

22/26
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Tables 5.3.9-5.3.10 and 5.3.11-5.3.12 provide sample sizes for optimal
three-stage designs and minimax designs based on the method proposed
by Chen (1997b) for a variety of design parameters. For example, the
result in Table 5.3.9 corresponding to a design with po = 0.25 and pi =
0.40 gives 4/17,12/42,25/79 for achieving an 80% power at the 5% level
of significance. In other words, at the first stage, seventeen subjects are
treated. If no more than four responses are obtained, then the trial is
terminated. Otherwise, accrual continues to a total of 42 subjects at the
second stage. If there are no more than 12 subjects respond, then stop
the trial. Otherwise, proceed to the third stage by recruiting 37 additional
subjects. We would conclude that the test drug is effective if there are more
than 25 responses for the subjects in the three stages combined.

5.4 Flexible Designs for Multiple-Arm Trials

In the previous section, we introduced procedures for sample size calcu-
lation under (flexible) optimal multiple-stage designs for single arm phase
II cancer trials. Sargent and Goldberg (2001) proposed a flexible optimal
design considering a phase II trial that allows clinical scientists to select
the treatment to proceed for further testing for a phase III trial based on
other factors when the difference in the observed responses rates between
two treatments falls into the interval [—5,5], where <5 is a pre-specified
quantity. The proposed rule is that if the observed difference in the re-
sponse rates of the treatments is larger than 6, then the treatment with the
highest observed response rate is selected. On the other hand, if the ob-
served difference is less than or equal to 5, other factors may be considered
in the selection. In this framework, it is not essential that the very best
treatment is definitely selected, rather it is important that a substantially
inferior treatment is not selected when a superior treatment exists.

To illustrate the concept proposed by Sargent and Golberg (2001), for
simplicity, consider a two-arm trial. Let pi and p-2 denote the true re-
sponse rates for the poor treatment and the better treatment, respectively.
Without loss of generality, assume that p2 > pi-

Let pi and p2 denote the corresponding observed response rates for
treatment 1 and treatment 2, respectively. Sargent and Glodberg (2001)
considered the probability of correctly choosing the better treatment, i.e.,

Pcorr = P{Pl > Pl + 8\Pl,P2}

and the probability of the difference between the two observed response
rates falling into the ambiguous range of [—6, 5], i.e.,
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Assuming that each treatment arm has the same number of subjects (i.e.,
n\ — n2 = n). The above two probabilities are given by

and
n n

p
-* Arm —

where /^ is the indicator function of event A, i.e., I A = 1 if event >l occurs
and 7,4 — 0 otherwise. Sargent and Goldberg (2001) suggested that n be
selected such that Pcorr + pPAmb > 7> a pre-specified threshold. Table
5.4.1 provides results for p = 0 and p = 0.5 for different sample sizes for
p2 = 0.35 and 6 = 0.05.

Liu (2001) indicated that by the central limit theorem, we have

Pcorr « 1 - «

and

a J \ °
where <3? is the standard normal cumulative distribution function, e — P2~l
and

2 =

n
As indicated in Chapter 4, the power of the test for the following hypotheses

HQ :pi = p2 versus Ha : pi ^ p2

Table 5.4.1: Probability of Various Outcomes for Different
Sample Sizes (5 = 0.05)

n Pi
50
50
75
75
100
100

0.
0.
0.
0.
0,
0,

.25
,20
.25
.20
.25
.20

P2

0.
0.
0.
0.
0,
0,

.35
,35
.35
.35
.35
.35

-* Corr *j

0,.71
0.87
0.
0.
0,
0,

.76

.92

.76

.94

0
0,
0
0
0
0

4m6 -^ Corr i U.OiAmb

.24

.12

.21

.07

.23

.06

0,
0,
0,
0,
0,

.83

.93

.87

.96

.87
0.97
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Table 5.4.2: Sample Sizes Per Arm for Various A
Assuming 8 = 0.05 and p = 0 or p = 0.5

Pi
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

P2

0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

P =
A = 0.90

32
38
0.53
57
71
73
75
76

-0
A = 0.80

13
15
17
19
31
32
32
33

p = 0.5
A = 0.90

16
27
31
34
36
38
46
47

is given by

Let A = Pcorr + PAmb- Then

A = 1 -

As a result, sample size per arm required for a given A can be obtained.
Table 5.4.2 gives sample sizes per arm for 6 = 0.05 and A = 0.80 or 0.90
assuming p = 0 or p = 0.5 based on exact binomial probabilities.

Note that the method proposed by Sargent and Goldberg (2001) can be
extended to the case where there are three or more treatments. The selec-
tion of the best treatment, however, may be based on pair wise comparison
or a global test. Table 5.4.3 provides sample sizes per arm with three or
four arms assuming 8 = 0.05 and A = 0.80 or 0.90.

5.5 Remarks

Chen and Ng (1998) indicated that the optimal two-stage design described
above is similar to the Pocock sequence design for randomized controlled
clinical trials where the probability of early termination is high, the total
possible sample size is larger, and the expected size under the alternative
hypothesis is smaller (see also Pocock, 1977). The minimax design, on the
other hand, is similar to the O'Brien-Fleming design where the probability
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Table 5.4.3: Sample Size Per Arm for Trials with Three or Four
Arms for e = 0.15, 6 = 0.05, and A - 0.80 or 0.90

A

A

6

= 0.80
0.2
0.3
0.4
0.5
= 0.90
0.2
0.3
0.4
0.5

n(p
r = 3

18
38
54
58

39
77
98
115

= 0)
r = 4

31
54
73
78

53
95
119
147

n(p =
r = 3

13
26
31
34

30
51
68
73

0.5)
r = 4

16
32
39
50

34
59
78
93

of early termination is low, the total possible size is smaller, but the ex-
pected size under the alternative hypothesis is larger (O'Brien and Fleming,
1979). The minimum design is useful when the patient source is limited,
such as a rare cancer or a single-site study.

Recently, multiple-stage designs have been proposed to monitor re-
sponse and toxicity variables simultaneously. See, for example, Bryant and
Day (1995), Conaway and Petroni (1996), Thall, Simon, and Estey (1995,
1996). In these designs, the multivariate outcomes are modeled and family-
wise errors are controlled. It is suggested that this form of design should
be frequently used in cancer clinical trials since delayed toxicity could be
a problem in phase II trials. Chen (1997b) also pointed out that one can
use optimal three-stage design for toxicity monitoring (not simultaneous
with the response). The role of response with that of no toxicity can be
exchanged and the designs are similarly optimal and minimax.

In practice, the actual size at each stage of the multiple-stage design may
deviate slightly from the exact design. Green and Dahlberg (1992) reviewed
various phase II designs and modified each design to have variable sample
sizes at each stage. They compared various flexible designs and concluded
that flexible designs work well across a variety of p'0s, p[s, and powers.



Chapter 6

Tests for Goodness-of-Fit
and Contingency Tables

In clinical research, the range of a categorical response variable often con-
tains more than two values. Also, the dimension of a categorical variable
can often be multivariate. The focus of this chapter is on categorical vari-
ables that are non-binary and on the association among the components
of a multivariate categorical variable. A contingency table is usually em-
ployed to summarize results from multivariate categorical responses. In
practice, hypotheses testing for goodness-of-fit, independence (or associa-
tion) , and categorical shift are usually conducted for evaluation of clinical
efficacy and safety of a test compound under investigation. For example, a
sponsor may be interested in determining whether the test treatment has
any influence on the performance of some primary study endpoints, e.g.,
the presence/absence of a certain event such as disease progression, adverse
event, or response (complete/partial) of a cancer tumor. It is then of inter-
est to test the null hypothesis of independence or no association between
the test treatment (e.g., before and after treatment) and the change in the
study endpoint. In this chapter, formulas for sample size calculation for
testing goodness-of-fit and independence (or association) under an r x c
contingency table is derived based on various chi-square type test statis-
tics such as Pearson's chi-square and likelihood ratio test statistics. In
addition, procedures for sample size calculation for testing categorical shift
using McNemar's test and/or Stuart-Maxwell test is also derived.

In the next section, a sample size calculation formula for goodness-of-
fit based on Pearson's test is derived. Sample size calculation formulas
for testing independence (or association) with single stratum and multiple
strata are introduced based on various chi-square test statistics, respec-
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tively, in Sections 6.2 and 6.3. Test statistics and the corresponding sample
size calculation for categorical shift is discussed in Sections 6.4. Section
6.5 considers testing for carry-over effect in a 2 x 2 crossover design. Some
practical issues are presented in Section 6.6.

6.1 Tests for Goodness-of-Fit

In practice, it is often of interest to study the distribution of the primary
study endpoint under the study drug with some reference distribution,
which may be obtained from historical (control) data or literature review.
If the primary study endpoint is a categorical response that is non-binary,
Pearson's chi-square test is usually applied.

6.1.1 Pearson's Test

For the ith subject, let X{ be the response taking values from {xi, ...,xr},
i — 1,..., n. Assume that X^s are i.i.d. Let

Pk = P(Xi = x f c),

where k = l,...,r. p^ can be estimated by pk = n^jn, where rik is the
frequency count of the subjects with response value k. For testing goodness-
of-fit, the following hypotheses are usually considered:

HO '• Pk — Pk.o for all k vs. pk =^ Pk,o for some /c,

where pk.o is a reference value (e.g., historical control), k = l,...,r. Pear-
son's chi-square statistic for testing goodness-of-fit is given by

T = \^ U^k ~ Pfc'°)2

fc=i Pfc'°

Under the null hypothesis HQ, TG is asymptotically distributed as a central
chi-square random variable with r — 1 degrees of freedom. Hence, we reject
the null hypothesis with approximate a level of significance if

TG > Xa r-n

where Xa,r-i denotes the ath upper quantile of a central chi-square random
variable with r — 1 degrees of freedom. The power of Pearson's chi-square
test can be evaluated under some local alternatives. (A local alternative
typically means that the difference between treatment effects in terms of
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the parameters of interest decreases to 0 at the rate of l/\/n when the
sample size n increases to infinity.) More specifically, if

lim

then TG is asymptotically distributed as a non-central chi-square random
variable with r — 1 degrees of freedom and the non-centrality parameter <5.
For a given degrees of freedom r — 1 and a desired power ! — /? ,£ can be
obtained by solving for

*V-l(Xa.r- l l*)=0, (6.1-1)

where F r_i(•(<$) denotes the non-central chi-square distribution with r — 1
degrees of freedom and the non-centrality parameter S. Note that Fr-i(t\6)
is decreasing in $ for any fixed t. Hence, (6.1.1) has a unique solution. Let
$a,/3 be the solution of (6.1.1) for given a and /3. The sample size needed
in order to achieve the desired power of 1 — j3 is then given by

Jfc=l ™'"

where p^ should be replaced by an initial value.

6.1.2 An Example

Suppose a sponsor is interested in conducting a pilot study to evaluate
clinical efficacy of a test compound on subjects with hypertension. The
objective of the intended pilot study is to compare the distribution of the
proportions of subjects whose blood pressures are below, within and above
some pre-specified reference (normal) range with that from historical con-
trol. Suppose that it is expected that the proportions of subjects after
treatments are 20% (below the reference range), 60% (within the reference
range), and 20% (above the reference range), respectively. Thus, we have
r = 3 and

(Pi,p2,p3) = (0.20,0.60,0.20)

Furthermore, suppose based on historical data or literature review, the
proportions of subjects whose blood pressures are below, within, and above
the reference range are given by 25%, 45%, and 30%, respectively. This is,

(P10,P20,P30) = (0.25,0.45,0.30).

The sponsor would like to choose a sample size such that the trial will
have an 80% ((3 — 0.20) power for detecting such a difference at the 5%
(a = 0.05) level of significance.
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First, we need to find 6 under the given parameters according to (6.1.1):

This leads to £0.05,0.2 = 9.634. As a result, the sample size needed in order
to achieve an 80% power is given by

n r .'(0.20-0.25)2 (0.60-0.45)2 (0.20 - 0.30)2

n = 9.634 | —— 1 —— 1-
0.25 0.45 0.30

104.

6.2 Test for Independence—Single Stratum

Arxc (two-way) contingency table is defined as a two-way table represent-
ing the cross-tabulation of observed frequencies of two categorical response
variables. Let x^, i — l,...,r and ?/j, j = l,...,c denote the categories (or
levels) of variables X and Y, respectively. Also, let nlj be the cell frequency
of X — Xi and Y — yj. Then, we have the following rxc contingency table:

x'

Xr

y\ yi ••• yc
nn n\2 ••• n\c

nri nr2 ••• nrc

n.i n.^ • • • n.c

n2.

nr.

where
n.j — Y^i=i nij (tne jth column total),
HI. — ^Cj=\ nij (^ne *th row total),
n = V* , y^c. , HH (the overall total).

Z_-^ i— 1 L.,.^ J=^ I lj \ /

In practice, the null hypothesis of interest is that there is no association
between the row variable and the column variable, i.e., X is independent of
y. When r = c = 2, Fisher's exact test introduced in the previous chapter
can be applied. In the following we consider some popular tests for general
cases.

6.2.1 Pearson's Test

The following Pearson's chi-square test statistic is probably the most com-
monly employed test statistic for independence: by
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where
rii.n.

Define pij = riij/n, pi. = rii./n, and p.j = n.j/n. Then T/ can also be
written as

Pi-P-j

Under the null hypothesis that X and Y are independent, T/ is asymptoti-
cally distributed as a central chi-square random variable with (r — l ) (c— 1)
degrees of freedom. Under the local-alternative with

(6.2.1)

where ptj = P(X = Xi, Y = yj), p{. = P(X = Xi), and p.j = P(Y = y^), T/
is asymptotically distributed as a non-central chi-square random variable
with (r — l)(c — 1) degrees of freedom and the non-centrality parameter 6.

For given a and a desired power 1 — /3, S can be obtained by solving

F( r_i)(c_i)(Xa,(r-l)(c-l)|<*) =/?• (6.2.2)

Let the solution be <5Qi/3. The sample size needed in order to achieve power
1 — /? is then given by

7 7 _ A - •». •«. - - Pi-P-j,

Pi • P-

6.2.2 Likelihood Ratio Test

Another commonly used test for independence is the likelihood ratio test.
More specifically, the likelihood function for a two-way contingency table
is given by

Without any constraint, the above likelihood function is maximized at p
riij/n, which leads to

maxlogL = 7 7 HH log —
PH f - 4 - n
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Under the null hypothesis that pij = Pi.p.j, the likelihood function can be
re-written as

1=1 j-l

It is maximized at p^ — rii./n and p.j = n.j/n, which leads to

max log L —
Pij~pr.p.j I—IL—J " - Yl2

Hence, the likelihood ratio test statistic can be obtained as

TL — 2 I max log L — max log I/ j = ^ _ . / , nij 1°S —~>

where rriij = ni.n.j/n. Under the null hypothesis, TL is asymptotically
distributed as a central chi-square random variable with (r — l)(c — 1)
degrees of freedom. Thus, we reject the null hypothesis at approximate a
level of significance if

Note that the likelihood ratio test is asymptotically equivalent to Pearson's
test for independence. Under the local alternative (6.2.1), it can be shown
that TL is still asymptotically equivalent to Pearson's test for testing in-
dependence in terms of the power. Hence, the sample size formula derived
based on Pearson's statistic can be used for obtaining sample size for the
likelihood ratio test.

6.2.3 An Example

A small scaled pilot study was conducted to compare two treatment (treat-
ment and control) in terms of the categorized hypotension. The results are
summarized in the following 2 x 3 (r — 2 and c — 3) contingency table:

treatment
control

Hypotension
below normal above

2 7 1
2 5 3
4 12 4

10
10
20

It can be seen that the treatment is better than the control in terms of the
lowering blood pressure. In order to confirm that such a difference truly
exists, the investigator is planning a larger trial to confirm the finding by
applying Pearson's chi-square test for independence. It is of interest to
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select a sample size such that there is an 80% (/3 = 0.2) power for detecting
such a difference observed in the pilot study at the 5% (a = 0.05) level of
significance.

We first identify 5 under the given parameters according to (6.2.2) by
solving

This leads to #0.05,0.2 = 9.634. As a result, the sample size required for
achieving an 80% power is given by

— #0.05,0.2
(Pij -

-i
9.634

0.0667
145.

6.3 Test for Independence—Multiple Strata

In clinical trials, multiple study sites (or centers) are usually considered
not only to make sure clinical results are reproducible but also to expedite
patient recruitment so that the intended trials can be done within the
desired time frame. In a multi-center trial, it is a concern whether the
sample size within each center (or stratum) is sufficient for providing an
accurate and reliable assessment of the treatment effect (and consequently
for achieving the desired power) when there is significant treatment-by-
center interaction. In practice, a typical approach is to pool data across all
centers for an overall assessment of the treatment effect. However, how to
control for center effect has become another issue in data analysis. When
the data is binary, the Cochran-Mantel-Haenszel (CMH) test is probably
the most commonly used test procedure, and can adjust for differences
among centers.

6.3.1 Cochran-Mantel-Haenszel Test

To introduce the CMH method, consider summarizing data from a multi-
center trial in the following series of 2 x 2 contingency tables:

Treatment
Treatment 1
Treatment 2

Total

Binary Response
0 1

nh,io nh,n
ra/i,2o nh,2i
nh,-o n>h,.i

Total

ra/i.i-

w/1,2-
nh,-

where h = 1, ...,#, nh,ij is the number of patients in the hth center (stra-
tum) under the ith treatment with response j. Let Ph,ij be the probability
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that a patient in the htli stratum under the iih treatment has response j.
The hypotheses of interest are given by

HO '• Ph,ij = Ph,2j for all h,j versus Ha : ph,ij ^ Ph,2j for some h,j.

The CMH test for the above hypotheses is defined as

TICMH =

where

, - , . i , , i - h , 2 - , - o , - i , , „m/i.ii = - and vh = — -—^f - '—- — , h = 1, ...,H.
nh n^(nh - 1)

Under the null hypothesis HQ, TCMH is asymptotically distributed as a
chi-square random variable with one degree of freedom. Hence, we reject
the null hypothesis at approximate a. level of significance if

TCMH >Xa,i-

In order to evaluate the power of this test under the alternative hypothesis,
we assume that nh — » oc and n^/n -^ TT^, where n = Xl/i=i n/i- Then,
under the local alternative

lim 1,11 ~Ph,l-Ph,-l) = (5, (6.3.1)

where ph.i. = Ph,io+Ph,n and ph,.j = PH,IJ + Ph,2j- TCMH is asymptotically
distributed as a chi-square random variable with 1 degree of freedom and
the non-centrality parameter S2. In such a situation, it can be noted that
TCMH > Xa,i is equivalent to N(6,l) > za/2- Hence, the sample size
required for achieving a desired power of 1 - /3 at the a level of significance
is given by

za/2 + z(i)

6.3.2 An Example

Consider a multi-national, multi-center clinical trial conducted in four dif-
ferent countries (the United States of America, the United Kingdom, France,
and Japan) for evaluation of clinical efficacy and safety of a test compound.
Suppose the objective of this trial is to compare the test compound with
a placebo in terms of the proportions of patients who experience certain
type of adverse events. Let 0 and 1 denote the absence and presence of the
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adverse event. It is expected that the sample size will be approximately
evenly distributed across the four centers (i.e., TT^ = 25%, h = 1,2,3,4).
Suppose based on a pilot study, the values of Ph,ij's within each country
are estimated as follows:

center
1

2

3

4

Treatment
Study Drug

Placebo
Total

Study Drug
Placebo

Total
Study Drug

Placebo
Total

Study Drug
Placebo

Total

Binary
0

0.35
0.25
0.60
0.30
0.20
0.50
0.40
0.20
0.60
0.35
0.15
0.50

Response
1

0.15
0.25
0.40
0.20
0.30
0.50
0.10
0.30
0.40
0.15
0.35
0.50

Total
0.50
0.50
1.00
0.50
0.50
1.00
0.50
0.50
1.00
0.50
0.50
1.00

By (6.3.1), 6 is given by 0.3030. Hence the sample size needed in order to
achieve an 80% (j3 = 0.20) power at the 5% (a = 0.05) level of significance
is given by

2 + ^)2 (1.96 + 0.84)2

n =
0.30302 86.

6.4 Test for Categorical Shift

In clinical trials, it is often of interest to examine any change in laboratory
values before and after the application of the treatment. When the response
variable is categorical, this type of change is called a categorical shift. In
this section, we consider testing for categorical shift.

6.4.1 McNemar's Test

For a given laboratory test, test results are usually summarized as either
normal (i.e., the test result is within the normal range of the test) or ab-
normal (i.e., the test result is outside the normal range of the test). Let Xij
be the binary response (xij = 0: normal and x^ = 1: abnormal) from the
zth (i = l,...,n) subject in the jth (j = 1: pre-treatment and j = 2: post
treatment) treatment. The test results can be summarized in the following
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2 x 2 table:

Pre- Treatment
Normal

Abnormal

Post-Treatment
Normal Abnormal

noo noi
nio nn
n.0 n.i

no-

n..

Define

POO = P(Xn = 0, Xj2 = 0)

poi = P(XH = Q,Xi2 = 1)

pio = P(XH = I,xi2 = 0)

pi+ = P(xii = 1) = pio + Pii

= P(xi2 = 1) =P01 + Pu-

ll is then of interest to test whether there is a categorical shift after treat-
ment. A categorical shift is defined as either a shift from 0 (normal) in
pre-treatment to 1 (abnormal) in post-treatment or a shift from 1 (abnor-
mal) in pre-treatment to 0 (normal) in post-treatment. Consider

: pl+ = versus Ha :

which is equivalent to

HO • Pio = Poi versus Ha : Pio ^ Poi-

The most commonly used test procedure to serve the purpose is McNemar's
test, whose test statistic is given by

TMN —
+
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Under the null hypothesis HQ, TMN is asymptotically distributed as a stan-
dard normal random variable. Hence, we reject the null hypothesis at ap-
proximate a level of significance if

\TMN\ > za/2-

Under the alternative hypothesis that poi 7^ Pio, it follows that

TMN = ,

I n /-/nio noi\
A / v n I
y noi + nio ^ n n /

= I 1 ̂
\/Pio + poi \/n ̂

where di = xn — xi2- Note that c^'s are independent and identically dis-
tributed random variables with mean (poi — Pio) and variance poi + Pio —
(POI — Pio)2- As a result, by the Central Limit Theorem, the power of
McNemar's test can be approximated by

Pio) - Zq/zVpoi +Pio

\ VPoi + Pio - (Poi - Pior /

In order to achieve a power of 1 — /?, the sample size needed can be obtained
by solving

\/n(poi — Pio) — -zQ/2\/Poi +Pio _

\/Poi + Pio - (Poi - Pio)2

which leads to

+ z/3A/Pio +Poi - (Poi -Pio)2]2 (6 4 n
I nr\ - ^ v\~ - \ ̂

Define ^ = POI/PIO and 7rDiscordant = p0i +PIO- Then

n = : -r, . , , , J *-) TTDiscordantj

(ij) - l)27rDiscordant

6.4.2 Stuart-Maxwell Test

McNemar's test can only be applied to the case in which there are two
possible categories for the outcome. In practice, however, it is possible
that the outcomes are classified into more than two (multiple) categories.
For example, instead of classifying the laboratory values into normal and
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abnormal (two categories), it is often classify them into three categories
(i.e., below, within, and above the normal range). Let Xij £E {!,...,r} be
the categorical observation from the ith subject under the jth treatment
(j — 1: pre-treatment and j = 2: post-treatment). In practice, the data
are usually summarized by the following r x r contingency table:

Pre-Treatment
Post-Treatment

1 2 • • • r

f L

n2.

Let
P(xki = i,xk2 = j),

which is the probability that the subject will shift from i pre-treatment
to j post-treatment. If there is no treatment effect, one may expect that
Pij — pji for all 1 < i, j, < r. Hence, it is of interest to test the hypotheses

HO : Pij = plj for all i ^ j versus Ha : ptj ^ pij for some i ^ j.

In order to test the above hypotheses, the test statistic proposed by Stuart
and Maxwell is useful (see, e.g., Stuart, 1955). We refer to the test statistic
as Stuart-Maxwell test, which is given by

£ + n.

Under the null hypothesis HQ, TSAI follows a standard chi-square distribu-
tion with r(r — l)/2 degrees of freedom. Hence, for a given significance level
of a, the null hypothesis should be rejected if TSM > X« r(r-i)/2-

Under the local alternative given by

lim n >
n->oc *—<

Kj

TSM is asymptotically distributed as a non-central chi-square random vari-
able with r(r — l)/2 degrees of freedom and the non-centrality parameter
6. For a given degrees of freedom (r(r — l)/2) and a desired power (1 — /3),
6 can be obtained by solving

(6.4.2)
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where Fa(-\6) is the cumulative distribution function of the non-central chi-
square distribution with degrees freedom a and non-centrality parameter 5.
Let 6atp be the solution. Then, the sample size needed in order to achieve
a power of 1 — /3 is given by

n = 6a,/3 E (Pij -

Pij i Pji
(6.4.3)

6.4.3 Examples

McNemar's Test

Suppose that an investigator is planning to conduct a trial to study a test
compound under investigation in terms of the proportions of the patients
with nocturnal hypoglycaemia, which is denned to be the patients with the
overnight glucose value < 3.5 mgL on two consecutive visits (15 minutes/per
visit). At the first visit (pre-treatment), patients' overnight glucose levels
will be measured every 15 minutes. Whether or not the patient experience
nocturnal hypoglycaemia will be recorded. At the second visit, patients
will receive the study compound and the overnight glucose levels will be
obtained in a similar manner. Patients' experience on nocturnal hypogly-
caemia will also be recorded. According to some pilot studies, it is expected
that about 50% (pio = 0.50) patients will shift from 1 (nocturnal hypogly-
caemia pre-treatment) to 0 (normal post-treatment) and 20% (poi — 0.20)
patients will shift from 0 (normal pre-treatment) to 1 (nocturnal hypogly-
caemia post-treatment). The investigator would like to select a sample size
such that there is an 80% ((3 = 0.20) power for detecting such a difference
if it truly exists at the 5% (a = 0.05) level of significance. According to
(6.4.1), the required sample size can be obtained as follows:

+PIQ + 3 /3AP10 +P01 -

(Pio-Poi)2

[1.96V^20"-f 0.50 + 0.84^0.20 + 0.50 - (0.20 - 0.50)2]2

(0.20 - 0.50)2

59.

Stuart-Maxwell Test

A pilot study was conducted to study the treatment effect of a test com-
pound based on the number of monocytes in the blood. The primary study
endpoint is the number of monocytes (i.e., below, within, and above nor-
mal range) in the blood (i.e., r = 3). The results were summarized in the
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following contingency table:

Pre- Treatment
below

normal
above

Post-Treatment
below normal above

3 4 4
2 3 3
1 2 3
6 9 10

11
8
6

25

^From this pilot study, the results suggest that the test compound can in-
crease the number of monocytes in the blood because the upper off diagonal
elements are always larger than those in the lower off diagonal.

To confirm whether such a trend truly exists, a larger trial is planned
to have an 80% (j3 = 0.20) power at the 5% (a = 0.05) level of significance.
For this purpose, we need to first estimate 6 under the given parameters
according to (6.4.2).

which leads to 6a,p = 10.903. As a result, the sample size needed for
achieving an 80% power is given by

E Pa + Pa

-i
10.903
0.107

102.

6.5 Carry-Over Effect Test

As discussed earlier, a standard 2 x 2 crossover design is commonly used
in clinical research for evaluation of clinical efficacy and safety of a test
compound of interest. When the response is binary, under the assump-
tion of no period and treatment-by-period interaction (carry-over effect),
McNemar's test can be applied to test for the treatment effect. In some
cases, the investigator may be interested in testing the treatment-by-period
interaction. In this section, statistical procedure for testing the treatment-
by-period interaction, based on the model by Becker and Balagtas (1993),
is introduced. The corresponding procedure for sample size calculation is
derived.

6.5.1 Test Procedure

Consider a standard two-sequence, two-period crossover design, i.e., (AB,
BA). Let Xijk be the binary response from the fcth (k — l , . . . ,nj) subject



6.5. Carry-Over Effect Test 157

in the ith sequence at the jth dosing period. Let pij = P(xijk = 1). In
order to separate the treatment, period, and carryover effects, Becker and
Balagtas (1993) considered the following logistic regression model

i Pn ,log = a 4- TI + pi,
1 -Pii

log -—1-2— = a 4- T2 + p2 + 7i,
1 -Pl2

1 P21 , ,log = a + r2 + pi,
1 -P21

log = a 4- n + p2 4- 72,
1 ~P22

where TI is the ith treatment effect, pj is the jth period effect, and 7^ is the
carry-over effect from the first period in the kth sequence. It is assumed
that

Tl + r2 = 0

Pi 4- P2 = 0

7i + 72 = 0.

Let

7 = 7i - 72
l Pll . , P12 , P21 , P22

= log + log log log
1-Pll 1-P12 1-P21 1-P22

The hypotheses of interest are given by

HQ : 7 = 0 versus Ha : 7 ^ 0.

Let pij — n"1 X^fc ^tjfe- Then, 7 can be estimated by

, Pii , , Pi2 T P2i , P227 = log - - ̂ - + log - - - -- log - - : -- log
I s*. ' O 1 ^ "O -i ^ VO -i ^

-Pll 1-P12 1-P21 1-P22

It can be shown that 7 is asymptotically distributed as a normal random
variable with mean 7 and variance cr^n]"1 + o^n^"1, where

2 .cr, = var - - - r +
Pi2(l-Pt2)> / '

which can be estimated by o^, the sample variance of

"T

Pil ( l -Pi l ) Pi2(l-P i 2) '
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Hence, the test statistic is given by

Under the null hypothesis HQ , T is asymptotically distributed as a standard
normal random variable. We reject the null hypothesis at approximate a
level of significance if

m > Za/2

Under the alternative hypothesis that 7 ^ 0, the power of the this test
procedure can be approximated by

For a given power of 1 — /3 and assuming that n = n\ — n?, the sample size
needed can be obtained by solving

21-1/2

02 '

which leads to
2 + 2/3) Vl +n =

72

6.5.2 An Example

Consider a single-center, open, randomized, active-controlled, two-sequence,
two-period crossover design with the primary efficacy endpoint of nocturnal
hypoglycaemia. The objective of the study is to compare the study drug
with a standard therapy on the marketplace in terms of the proportions of
the patients who will experience nocturnal hypoglycaemia. As a result, the
investigator is interested in conducting a larger trial to confirm whether
such a effect truly exists. However, based on the results from a small-scale
pilot study, no evidence of statistical significance in the possible carry-over
effect was detected. According to the pilot study, the following parameters
were estimated: 7 = 0.89, o\ — 2.3, and a^ = 2.4. The sample size needed
in order to achieve an 80% (/3 = 0.2) power at the 5% (a = 0.05) level of
significance is given by

_ (zq/2 + ̂ (a\ + crj) __ (1.96 + Q.84)2(2.32 + 2.42)n _ _ _ — « 110.

Hence, a total of 110 subjects are required in order to have the desired
power for the study.
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6.6 Practical Issues

6.6.1 Local Alternative Versus Fixed Alternative

In this chapter, we introduced various chi-square type test statistics for con-
tingency tables. When the chi-square test has only one degree of freedom, it
is equivalent to a Z-test (i.e., a test based on standard normal distribution).
Hence, the formula for sample size calculation can be derived under the or-
dinary fixed alternative. When the degrees of freedom of the chi-square
test is larger than one (e.g., Pearson's test for goodness-of-fit and indepen-
dence), it can be verified that the chi-square test statistic is distributed as
a weighted non-central chi-square distribution under the fixed alternative
hypothesis. In order words, it has the same distribution as the random vari-
able X^=i ^iX2($i) f°r some k, \i and Si, where X2(^i) denotes a chi-square
random variable with one degree of freedom and the non-centrality param-
eter Si. The power function based on a weighted non-central chi-square
random variable could be very complicated and no standard table/soft ware
is available. As a result, all the sample size formulas for the chi-square tests
with more than one degree of freedom are derived under the local alterna-
tive. Under the concept of local alternative, one assumes that the difference
in the parameters of interest between the null hypothesis and the alterna-
tive hypothesis shrinks to 0 at a speed of 1/^/n. In practice, however, it
is more appealing to consider the alternative as fixed. In other words, the
alternative hypothesis does not change as the sample size changes. Further
research in sample size estimation based on a fixed alternative is needed.

6.6.2 Random Versus Fixed Marginal Total

In randomized, controlled parallel clinical trials, the numbers of subjects
assigned to each treatment group are usually fixed. Consequently, when the
data are reported by a two-way contingency table (treatment and response),
one of the margins (treatment) is fixed. However, it is not uncommon (e.g.,
in an observational study) that the number of subjects assigned to each
treatment is also random. In this situation, Pearson's test for indepen-
dence between treatment and response is still valid. Thus, Pearson's test
is commonly used in the situation where the marginal distribution of the
numbers of the subjects for each treatment is unknown. When the marginal
distribution of the numbers of the subjects for each treatment is known or
can be approximated by some distribution such as Poisson, Pearson's test
may not be efficient. Alternatively, the likelihood ratio test may be useful
(see, e.g., Shao and Chow, 1990).
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6.6.3 r x c Versus p x r x c

In this chapter, we focus on procedures for sample size calculation for testing
goodness-of-fit, independence (or association), and categorical shift under
an r x c contingency table. In practice, we may encounter the situation
which involves a pxr x c contingency table when a third variable (e.g., sex,
race, or age). In practice, how to handle this type of three-way contingency
table is always a challenge. One simple solution is combining the third
variable with the treatment variable and applying the standard procedure
designed for a two-way contingency table. Further research regarding how
to handle three-way contingency tables is necessary.



Chapter 7

Comparing Time-to-Event
Data

In clinical research, in addition to continuous and discrete study endpoints
described in the previous two chapters, the investigator may also be inter-
ested in the occurrence of certain events such as adverse experience, disease
progression, relapse, or death. In most clinical trials, the occurrence of such
an event is usually undesirable. Hence, one of the primary objectives of the
intended clinical trials may be to evaluate the effect of the test drug on the
prevention or delay of such events. The time to the occurrence of an event
is usually referred to as the time-to-event. In practice, time-to-event has
become a natural measure of the extent to which the event occurrence is
delayed. When the event is the death, the time-to-event of a patient is the
patient's survival time. Hence, the analysis of time-to-event is sometimes
referred to as survival analysis.

In practice, statistical methods for analysis of time-to-event data are
very different from those commonly used for continuous variables (e.g.,
analysis of variance) due to the following reasons. First, time-to-event is
usually subject to censoring, e.g., right (left) or interval censoring, at which
its exact value is unknown but we know that it is larger or smaller than
an observed censoring time or within an interval. Second, time-to-event
data are usually highly skewed, which violate the normality assumption
of standard statistical methods such as the analysis of variance. In this
chapter, for simplicity, we only focus on sample size calculation based on
the most typical censor type (i.e., right censoring) and the most commonly
used testing procedures such as the exponential model, Cox's proportional
hazards model, and the weighted log-rank test.

The remainder of this chapter is organized as follows. In the next sec-
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tion, basic concepts regarding survival and hazard functions in the analysis
of time-to-event data are provided. In Section 7.2, formulas for sample size
calculation for testing equality, non-inferiority/superiority, and equivalence
in two-sample problems are derived under the commonly used exponential
model. In Section 7.3, formulas for sample size calculation under Cox's
proportional hazards model is presented. In Section 7.4, formulas for sam-
ple size estimation based on the weighted log-rank test are derived. Some
practical issues are discussed in Section 7.5.

7.1 Basic Concepts

In this section, we introduce some basic concepts regarding survival and
hazard functions, which are commonly used in the analysis of time-to-event
data. In practice, hypotheses of clinical interest are often involved in com-
paring median survival times, survival functions, and hazard rates. Under
a given set of hypotheses, appropriate statistical tests are then constructed
based on consistent estimators of these parameters.

7.1.1 Survival Function

In the analysis of time-to-event data, the survival function is usually used
to characterize the distribution of the time-to-event data. Let X be the
variable of time-to-event and S(x) be the corresponding survival function.
Then, S(x] is defined as

S(x) = P(X > x}.

Thus, S(x) is the probability that the event will occur after time x. When
the event is death, S(x) is the probability of a patient who will survive until
x. Theoretically, X could be a continuous variable, a discrete response, or
a combination of both. In this chapter, however, we only consider the case
where X is a continuous random variable with a density function f ( x ) . The
relationship between S(x) and f ( x ) is given by

A commonly used nonparametric estimator for S(x) is the Kaplan-Meier
estimator, which is given by

where the product is over all event times, di is the number of events observed
at the ith event time, and n\ is the number of subjects at risk just prior
the ith event time.
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7.1.2 Median Survival Time

In a clinical study, it is of interest to compare the median survival time,
which is defined to be the 50% quantile of the surival distribution. In other
words, if mi/2 is the median survival time, then it should satisfy

P(X > m1/2) - 0.5.

A commonly used nonparametric estimator for mj/2 is given by mi/2 =
S'~1(0.5), where S is the Kaplan-Meier estimator. When the time-to-event
is exponentially distributed with hazard rate A, it can be show that the
median survival time is given by log2/A.

7.1.3 Hazard Function

Another important concept in the analysis of time-to-event data is the so-
called hazard function, which is defined as

r / x ,. P(x < X < x + &x\X > x)
h(x] = hm — - - - - ! - -

AX^O Ax

As it can be seen, h(x) can also be written as

which implies that

f fx 1S(x] = exp < - / h(i)da \ .
( J o )

If we assume a constant hazard rate (i.e., h(t) = A for some A), S(x)
becomes

S(x) = exp{—Xx}.

In this case, time-to-event X is distributed as an exponential variable with
hazard rate A.

7.1.4 An Example

A clinical trial was conducted to study a test treatment on patients with
small cell lung cancer. The trial lasted for 1 year with 10 patients entered
in the study simultaneously. The data is given in Table 7.1.1 with "+"
indicating censored observations.

The Kaplan-Meier estimator can be obtained based on (7.1.1) with me-
dian 0.310. The obtained Kaplan-Meier estimator is plotted in Figure 7.1.1.
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Table 7.1.1: Survival Data

Subject Number
1
2
3
4
5
6
7
8
9
10

Survival Time
0.29
0.25
0.12
0.69

1.00+
0.33
0.19

1.00+
0.23
0.93

It can be seen from the Kaplan-Meier plot that approximately 80% patients
in the patient population will live beyond 0.2 years. If we assume constant
hazard rate over time, the estimated hazard rate according to (7.2.1) in the
next section is 1.59.

7.2 Exponential Model

In what follows, formulas for sample size calculation based on hazard rates
for median survival times and survival functions between treatment groups
will be derived under an exponential model, which is the simplest paramet-
ric statistical model for time-to-event data. Under the exponential model,
it is assumed that the time-to-event is exponentially distributed with a
constant hazard rate. For survival analysis in clinical trials comparing two
treatments, the hypothesis of interest could be either comparing the haz-
ard rates or the median survival times. However, since the time-to-event is
assumed to be exponentially distributed, the median survival time is deter-
mined by the hazard rate. As a result, comparing median survival times is
equivalent to comparing hazard rates. Without loss of generality, we focus
on comparing hazard rates between treatment groups. In this section, we
will introduce the method by Lachin and Foulkes (1986).

Consider a two-arm parallel survival trial with accrual time period TO
and the follow-up T — To. Let a^ denote the entry time of the jth patient
of the ith treatment group. It is assumed that cnj follows a continuous
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Figure 7.1.1: Kaplan-Meier Estimator for S(x)

Kaplan-Meier Esitmator for S(x)

0.0 0.2

distribution with the density function given by

When 7 > 0, the entry distribution is convex, which implies fast patient
entry at beginning. When 7 < 0, the entry distribution is concave, which
implies lagging patient entry. For convenience, we define g(z) — I/To when
7 = 0, which implies uniform patient entry. Let t^ be the time-to-event
(i.e., the time from the patient entry to the time observing event) for the jth
subject in the ith treatment group, i = 1, 2, j — 1,.... n^. It is assumed that
tij follows an exponential distribution with hazard rate A^. The information
observed from the sample is (xij,6ij} — (min(ty, T — a^-), I{tij < T — o-ij})-
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For a fixed z, the joint likelihood for X i j , j = 1, . . . ,nj can be written as

It can be shown that the MLE for Az is given by

'n — \-^rii
Ej=l Zij

According to the Central Limit Theorem,

1 l — - ' o p ( l )

where

and —>d denotes convergence in distribution. Note that

/•TO
1 - / g(a)e-Xt(T-a)da

T,i ,-T-a

g(a)da I \ixe~ l

o Jo

g(a) da
'o *i

- ^-E(5i:i),

'•TO/ • o f — a

I g(a)da I \ixe~XiXdx,
Jo Jo
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and

/ ° g(a)da I XiX2e~XiXdx + (T - afe
Jo Jo

rTo t-T—a
I g(a}da

Jo Jo
xe X i X d x

2E(Sijxij)

Hence

2XiE(6ijxij} + \2
iE(x2

ij]

That is,

= A 1 +

-i
(7.2.2)

7.2.1 Test for Equality

Let € = AI — A2 be the difference between the hazard rates of a control
and a test drug. To test whether there is a difference between the hazard
rates of the test drug and the reference drug, the following hypotheses are
usually considered:

HQ : e = 0 versus Ha : e ̂  0.

Under the null hypothesis, test statistic

T = (A! - A2)
<r2(A2)

-1/2

approximately follows a standard normal distribution for large HI and n2.
We then reject the null hypothesis at approximate a level of significance if

~Al V2(Ai) , <72(A2)"
1

-1/2

> (7.2.3)

Under the alternative hypothesis that AI — A2 ^ 0, the power of the above
test is approximately

x ,- A2 | a/2
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As a result, the sample size needed in order to achieve a desired power of
1 — (3 can be obtained by solving

2(A2)r' /2
— J - Zap - 2fl-

Under the assumption that n\ = kn^t we obtain that

ni = -TT^ rrr- I -r-^ + a"(A2) I - (7.2.4)

7.2.2 Test for Non-Inferiority/Superiority

Since 6 = AI — A2, where AI and A2 are the hazard rates of the control
and test drug, respectively, in practice, a smaller hazard rate is considered
a favor of the test drug. In other words, a negative value of e implies a
better performance of the test drug than the control. Hence, the problem
of testing non-inferiority and superiority can be unified by the following
hypotheses:

HQ : e < 6 versus Ha : e > S,

where 6 is the superiority or non-inferiority margin. When 6 > 0, the
rejection of the null hypothesis indicates the superiority of the test drug
over the control. When 6 < 0, the rejection of the null hypothesis indicates
the non-inferiority of the test drug against the control. Similarly, under the
null hypothesis, test statistic

T = (At - A2 - 6)
a2(A2)

-1/2

is asymptotically distributed as a standard normal random variable. Thus,
we reject the null hypothesis at approximate a level of significance if

-1/2
rr*l \i ] rr*l\n\

- \ 2 ~ S )

Under the alternative hypothesis that e > J, the power of the above test is
approximately

Til n-2

As a result, the sample size needed in order to achieve a desired power of
1 - (3 can be obtained by solving

2 (A ) <72(A )"P1/2

1 ~Za = Z(3.
HI ri2 I
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Under the assumption that n\ — fcn2, we have

(e- k
(7.2.5)

7.2.3 Test for Equivalence

The objective is to test the following hypotheses:

HQ : \e\ > S versus Ha : \e\ < 6.

The null hypothesis is rejected and the test drug is concluded to be equiv-
alent to the control in average if

and

- A2 -

(Ai - A2 + S)

a2(A2)

4-
<72(A2)

-1/2

-1/2

Under the alternative hypothesis (|e| < S), the power of the above testing
procedure is approximately

(6-
-1/2

As a result, the sample size needed for achieving a power of 1 — (3 can be
obtained by solving the following equation

-1/2

As a result, the sample size needed for achieving a power of 1 — (3 is given
by HI = kn<2 and

^2(A2) - (7.2.6)

7.2.4 An Example

Suppose that the sponsor is planning a trial among the patients with either
Hodgkin's disease (HOD) or non-Hodgkin's lymphoma (NHL). The patients
will be given either an allogeneric (allo) transplant from an HLA-matched
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sibling donor or an autogeneic (auto) transplant where their own marrow
has been cleansed and returned to them after high dose of chemotherapy.
The primary objective is to compare the patients with allo or auto trans-
plant in terms of time to leukemia. The trial is planed to last for 3 (T = 3)
years with 1 year accrual (To = 1). Uniform patient entry for both allo and
auto transplant groups is assumed. It is also assumed that the leukemia-
free hazard rates for allo and auto transplant are given by 1 (Ai = 1) and 2
(\2 = 2), respectively. According to (7.2.2), the variance function is given
by

p-AiT _ p-A(T+T0)

o

-i

Test for Equality

Assume that n = n\ = n^. According to (7.2.4), the sample size needed in
order to achieve a 80% (f3 — 0.2) power at 0.05 level of significance is

(AQ 2~ (A2)

( A 2 - A 0 2

Test for Superiority

Assume that n — n\ — n2 and the superiority margin 6 = 0.2. According
to (7.2.5), the sample size needed in order to achieve a 80% ((3 — 0.2) power
at 0.05 level of significance is

(Za + Z f l ) 2 /V2(Ai) 2

(A2 — AI — S)2

(1.64 + 0.84)2

(2-1-0.2)2

48.

K97 + 3.94)

Test for Equivalence

Assume that n — n\ = n^, AI = A2 = 1, and the equivalence margin is 0.5
(6 ~ 0.5). According to (7.2.6), the sample size needed in order to achieve
a 80% (/3 = 0.2) power at 0.05 level of significance is
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(1.64 + 0.84)2

(0.5 - O)2

48.

-(0.97 + 0.97)

7.2.5 Remarks

Unconditional Versus Conditional

According to Lachin (1981), for testing equality of hazard rates based on
exponential model, there exists another way to construct the test statistic
other than (7.2.3). More specifically, the testing procedure can be modified
to reject the null hypothesis if

r ~ / i i \ I"1/2

(Ai - A2) a2(A) — + — > za/2, (7.2.7)
L \ni "2/J

where
^ niAi + 712^2
A = .

HI + n-2

As it can be seen, (7.2.7) is very similar to (7.2.3) except using a dif-
ferent estimate for the variance of AI — A2- The difference is that the
variance estimate used in (7.2.3) is the MLE without constraint while the
variance estimate used in (7.2.7) is a pooled estimate of AI — A2, which
is consistent conditional on HQ. We refer to (7.2.3) as the unconditional
method and (7.2.7) conditional method. In practice, which method (uncon-
ditional/conditional) should be used to test equality is always a dilemma
because one is not necessarily always more powerful than the other under
the alternative hypothesis. However, it is difficult to generalize the condi-
tional method to test non-inferiority/superiority and equivalence because
the MLE under HQ is difficult to find. Although both unconditional and
conditional methods have asymptotic size a under the null hypothesis, the
power under the alternative hypothesis are not equal to each other. Hence,
the sample size formula for (7.2.7) is different from the sample size formula
for (7.2.3). For the purpose of completeness, it is derived below.

Under the alternative hypothesis (e ̂  0), the power of (7.2.7) is approx-
imately

where
\ —
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Hence the sample size needed in order to achieve a power of 1 — j3 can be
achieved by solving

— + — 2a/2 —±- + — = Z0.
ni n2 I Ml m n2

Under the assumption that n\ — fcn2, it implies that

1

A

•k

where

1/2"

(7.2.8)

fc + 1

Losses to Follow-up, Dropout, and Noncompliance

If we further assume that the losses are exponentially distributed with loss
hazard rate rjL in the iih treatment group, it has been shown by Lachin and
Foulkes (1986) that variance of Aj is given by

In such a situation, an appropriate test statistic can be constructed by
replacing cr(Aj) and <r(A) by cr(A\, r^, 7^) and a(Aj, ̂ , 7^), respectively, where
f]i and 7^ are the MLE of r^ and 7^, respectively, and

+ 712 ftl +

Hence, appropriate sample size calculation formulas can be obtained by
replacing cr(A ?) , <r(A) by cr(Ai ,77i ,7j) and cr(A,7),7), respectively, where

, _
and Z =

n\

7.3 Cox's Proportional Hazards Model

The most commonly used regression model in survival analysis is Cox's
proportional hazards model. Let ti be the time-to-event for the ith subject
and Ci be the corresponding censoring time. Besides ti and Q, each sub-
ject also provide a p-dimension column vector of covariates denoted by Z{.
The most commonly encountered covariates include treatment indicator,
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demographical information,' medical history, etc. Let h(t\z) be the hazard
rate at time t for an individual with covariate vector z. Cox's proportional
hazard model assumes

= h(t\Q)eb'z,

where 6, the coefficient vector with the same dimension as 2, can be esti-
mated by maximizing the following partial likelihood function

the product is over all the observed deaths, z^ is the covariate vector
associated with the ith observed death, and Ri is the set of individuals
at risk just prior the zth observed death. Maximizing L is equivalent to
solving U(b) =0, where

The corresponding information matrix is given by 7(6) with the (a, 6)th
element given by

T(h\1(0)
v-^ £^j£Ri ^ J ^ j ^

h £*«,e"z>
f (Y.seRlz,^"\
h \ E,eR, *"> }

/T 7-pb'zi\'1 2^jinRt
 ZJe \

1 V pb'Zj I
\ l^jinRi e 3 /

(7.3.2)

7.3.1 Test for Equality

In practice, it is of interest to test the following hypotheses:

HQ : b = bo versus Ha : b ̂  b0.

To test b — &o, the following score statistic proposed by Schoenfeld (1981)
is used:

Under the null hypothesis of 6 = 60, Xsc ls asymptotically distributed as a
chi-square random variable with p degrees of freedom. The null hypothesis
is rejected if Xsc ^ Xa,p> where Xa,p ls ^he ath upper quantile of a chi-
square random variable with p degrees of freedom.

The most typical situation in practice is to compare two treatments
without adjusting for other covariates. As a result, we consider the indicator
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as the only covariate (z{ = 0: treatment 1; z{ = 1: treatment 2). Then,
according to (7.3.3) and (7.3.4), it follows that

and

I + Y2ie» (Vi.

where YIJ denotes the number of subjects at risk just prior the iih observed
event and i = 1, 2. In order to test for equality of two survival curves, the
following hypotheses are usually considered:

HQ : b = 0 versus Ha : b ̂  0.

Under the null hypothesis, we have

and
A Y2iYu

= E

Note that the score test statistic Xsc ~ ^(0)2/-^(0) reduces to the following
log-rank test statistic for two-sample problem:

-1/2'

which is discussed further in Section 7.4. Thus, we reject the null hypothesis
at approximate a level of significance if L > za/2 • The formula for sample
size calculation introduced below can be viewed as a special case of log-rank
test under the assumption of proportional hazard.

Let pi be the proportion of patients in the zth treatment group, Hi(i) be
the distribution function of censoring, and Aj(£) , f i ( t ) , and Fi(t) be the haz-
ard, density, and distribution function of survival in group ?', respectively.
Define the functions
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and

- F0(*))(l -

Then L is asymptotically distributed as a normal random variable with
variance 1 and mean given by

n1/2 J0°° log(A2(t)/A1(t))7r(t)(l - v(t))V(t)dt

Under the assumption of proportional hazard, log(A2(£)/Ai(£)) = b is a
constant. Assume that #2(i) = H\(t}. Let d = J0°° V(t)dt, which is the
probability of observing a event. In practice, mostly commonly Fi(t) «
FQ(£). In such a situation, it can be noted that ir(t} w p%, then the (7.3.5)
becomes

Iog(6)(npip2d)1/2.
Therefore, the two-sided sample size formula with significance level a and
power 1 — j3 is given by

„ = (Z°<* + Z . (7.3.6)

7.3.2 Test for Non-Inferiority/Superiority

We still assume that Zi — 0 for treatment 1 and Zj = 1 for treatment 2.
The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

H o : b < 6 versus Ha : b > <5,

where 8 is the superiority or non-inferiority margin. When 8 > 0, the re-
jection of the null hypothesis indicates superiority over the reference value.
When S < 0, the rejection of the null hypothesis implies non-inferiority
against the reference value. When b = 8, the test statistic

L = -1/2

follows a standard normal distribution when the sample size is sufficiently
large. Hence, the null hypothesis should be rejected if L > za. Under the
alternative hypothesis, L is asymptotically distributed as a normal random
variable with variance 1 and mean given by

n1/2 J0°°(log(A2(t)/A1(t)) -a)7r(t)(l -7r(t))V(t)dt 3
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Under the assumption of proportional hazard, A2(t) /Ai( t ) = 6 > 6 is a
constant. Assume that H2(t) — H\(t). Let d = J0°° V(t)dt, which is the
probability of observing a event. In practice, mostly commonly Fi(t) ~
Fo(t). In such a situation, it can be noted that ?r(t) « P2, then the (7.3.7)
becomes

Therefore, the sample size formula with significance level a and power 1 — /3
is given by

(za/2 + zp? ,7qs ,n = 77 — jrz - -. (7.3.8)
(b - S)2pip2d

7.3.3 Test for Equivalence

Assume that Zj = 0 for treatment 1 and Zi — \ for treatment 2. To establish
equivalence, the following hypotheses are usually considered

H0 :\b\>6 versus Ha : \b\ < 8.

The above hypotheses can be tested using two one-sided test procedures.
More specifically, the null hypothesis should be rejected if

h - Y"fc=l k Yue-

1/2

The power of the above procedure is approximately

Hence, the sample size needed in order to achieve a power of 1 — f3 at a
level of significance is given by

(Za , ~PI*, (7_3>9)

7.3.4 An Example

Infection of a burn wound is a common complication resulting in extended
hospital stays and in the death of severely burned patients. One of the im-
portant components of burn management is to prevent or delay the infec-
tion. Suppose an investigator is interested in conducting a trial to compare
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a new therapy with a routine bathing care method in terms of the time-
to-infection. Assume that a hazard ratio of 2 (routine bathing care/test
therapy) is considered of clinical importance (0 = 2}. It is further assumed
that about 80% of patients' infection may be observed during the trial
period. Let n — n\ = n2 (p± = p2 — 0.5).

Test for Equality

According to (7.3.6), the sample size per treatment group needed to achieve
a power of 80% (0 = 0.2) at the 5% level of significance (a = 0.05) is given
by

(zq/2 + z/?)2 (1.96 + 0.84)2 _
Iog2(/3)pip2d 2 x 0.5 x 0.5 x 0.8

Test for Superiority

Assume that the superiority margin is 0.5 (S = 0.5). By (7.3.8), the sample
size per treatment group needed for achieving an 80% ((3 = 0.2) power at
the 5% level of significance (a = 0.05) is given by

(za + ztf (1.96 + 0.84)2 _
log2(P}plP2d (2-0.5) x 0.5x0.5 x 0.8

Test for Equivalence

Assume that the equivalence limit is 1 and 6 = 0. Then, by (7.3.8), the
sample size per treatment group required in order to achieve an 80% power
(/3 = 0.2) at the 5% level of significance (a = 0.05) is given by

(*q + zg/2)2 (1.96 + 0.84)2

log2(P}plP2d (2 - 0.5) x 0.5 x 0.5 x 0.8

T.4 Weighted Log-Rank Test

When the time-to-event is not exponentially distributed and the assumption
of proportional hazard does not hold, the treatment effects are usually
evaluated by comparing survival curves (Si(t}}. To test whether there is
a difference between the true survival curves, the following hypotheses are
usually considered:

HQ : Si(t} — S2(t} versus Ha : Si(t} ^ S2(t}.
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In such a situation, testing non-inferiority/superiority or equivalence is usu-
ally difficult to be carried out, because Si(t) is an infinite dimensional pa-
rameter and, hence, how to define non-inferiority/superiority and equiv-
alence is not clear. As a result, we only provide sample size calculation
formula for testing equality in this section.

7.4.1 Tarone-Ware Test

In order to compare two survival curves, weighted log tests are usually
considered. The test statistic of weighted log-rank test (the Tarone-Ware
statistic) is given by

L =

where the sum is over all deaths, Jj is the indicator of the first group, Wi is
the ith weight, and YIJ is number of subjects at risk just before the jth death
in the ith group. When Wi = 1, L becomes the commonly used log-rank
statistic. Under the null hypothesis of HQ : Si = £2, L is asymptotically
distributed as a standard normal random variable. Hence, we would reject
the null hypothesis at approximate a level of significance if \L\ > za/2.

The sample size calculation formula we are going to introduce in this
section was developed by Lakatos (1986, 1988). According to Lakatos'
method, the trial period should be first partitioned into N equally spaced
intervals. Let d{ denote the number of deaths within the zth interval. Define
4>ik to be the ratio of patients in the two treatment groups at risk just prior
to the /eth death in the ith interval. The expectation of L under a fixed
local alternative can be approximated by

vg,_^ > l " 2 '

where the right summation of the each double summation is over the di
deaths in the ith interval, and the left summation is over the N intervals
that partition the trial period. Treating this statistic as N(E, 1), the sample
size needed in order achieve a power of 1 — /3 can be obtained by solving

E = za/2 + z/3-

When N is sufficiently large, we can assume that (f>ik = rf>i and Wik = w^
for all k in the ith interval. Let pt — di/d, where d = ^di. Then, E can
be written as

E = e(D)Vd,
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where

e(D) =

( / ' " l " ' (7A2)

and

Tfe = ^ 2. (7.4.3)

It follows that

(Eill «>?tt»7t )
'-. (7.4.4)

V '\
t J

Let n$ denote the sample size in the ith treatment group. Under the as-
sumption that n = n\ =712, the sample sized needed to achieve a power of
1 — /3 is given by

2d

Pi

where pi is the cumulative event rates for the zth treatment group.

7.4.2 An Example

To illustrate the method described above, the example given in Lakatos
(1988) is considered. In order to carry out Lakatos' method, we need to first
partition the trial period into N equal length intervals. Then, parameters
like 7i, rjt, pi, #i, and </>j need to be specified. There are two ways we can
specify them. One is directly specify them for each interval or estimate
them from a pilot study. Then the whole procedure becomes relatively
easy. However, some times only yearly rates are given for the necessary
parameters. Then we need to calculate all those parameters by ourself.

For example, consider a two-year cardiovascular trial. It is assumed that
the yearly hazard rates in treatment group (i = 1) and control group (i = 2)
are given by 1 and 0.5, respectively. Hence, the yearly event rates in the
two treatment groups are given by l — e~l = 63.2% and 1 — e~°-5 — 39.3%,
respectively. It is also assumed that the yearly loss to follow-up and non-
compliance rates are 3% and 4%, respectively. The rate at which patients
assigned to control begin taking a medication with an efficacy similar to
the experimental treatment is called "drop-in". In cardiovascular trials,
drop-ins often occur when the private physician of a patient assigned to
control detects the condition of interest, such as hypertension, and pre-
scribed treatment. In this example, it is assumed that the yearly drop-in
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rate is 5%. Assume that the patient's status follows a Markov chain with
four possible states, i.e., lossed to follow-up, event, active in treatment,
and active in control, which are denoted by L, E, AE and AC, respectively.
Then, the yearly transition matrix of this Markov chain is given by

T =

1 0 0.03 0.03
0 1 0.3935 0.6321
0 0 1 - £ 0.05
0 0 0.04 1 - £

Entries denoted by 1 — £ represent 1 minus the sum of the remainder of
the column. Assume, however, we want to partition the 2-year period into
20 equal length intervals. Then we need the transition matrix within each
interval. It can be obtained by replacing each off-diagonal entry x in T by
1 — (1 — x)llK. The resulting transition matrix is given by

1.0000 0.0000 0.0030 0.0030
0.0000 1.0000 0.0951 0.0488
0.0000 0.0000 0.8978 0.0051
0.0000 0.0000 0.0041 0.9431

Then, the patient distribution at the end of the i/lOth year is given by
-^i/20:r' wnere x 'ls a four-dimension vector indicating the initial distribution
of patients. So, for treatment group, x — (0,0,1,0)' indicating that at the
beginning of the trial all patients active in treatment. Similarly, for control,
x = (0,0,0,1). For illustration purpose, consider at the time point 0.3 year,
the patient distribution for the treatment group is given by

_ 3
' 1.0000 0.0000 0.0030 0.0030 '

0.0000 1.0000 0.0951 0.0488
0.0000 0.0000 0.8978 0.0051

. 0.0000 0.0000 0.0041 0.9431 .

<j

( ° "\
0
1

\o /

/ 0.0081 \
0.2577
0.7237

\ 0.0104 /

This indicates by the time of 0.3 year, we may expect 0.81% of patients
were lossed to follow-up, 25.77% experienced events, 72.37% were still active
in treatment, and 1.04% switched to some other medication with similar
effects as control (noncompliance). Hence, this vector becomes the third
row and first four columns of Table 7.4.1. Similary, we can produce all the
rows for the first eight columns in Table 7.4.1.

Assuming equal allocation of patients across treatment groups, we have
</> = 1 when ti = 0.1, which means just before time point tl = 0.1, the
ratio of patients on risk between treatment groups is 1. When ti = 0.2, the
patient at risk just prior to ti = 0.2 in control groups is the patients still
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Table 7.4.1: Sample Size Calculation by Lakatos' Method

*»
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

C :
E :

7
0.167

0.166

0.166

0.165

0.164

0.163

0.162

0.160

0.158

0.156

0.154

0.152

0.149

0.147

0.144

0.141

0.138

0.135

0.132

0.129

Control

V
0.250

0.250

0.249

0.249

0.248

0.246

0.245

0.243

0.241

0.239

0.236

0.234

0.231

0.228

0.225

0.222

0.219

0.215

0.212

0.209

P
0.098

0.090

0.083

0.076

0.070

0.064

0.059

0.054

0.050

0.046

0.043

0.039

0.036

0.034

0.031

0.029

0.027

0.025

0.023

0.021

2

1

1

1

1

1

1

1

1

1

1

1

1

1

e
.000

.986

.972

.959

.945

.932

.920

.907

.894

.882

.870

.857

.845

.833

1.820

1

1

1

.808

.796

.783

1.771

1.758

4>
1.000

0.951

0.905

0.862

0.821

0.782

0.746

0.711

0.679

0.648

0.619

0.592

0.566

0.542

0.519

0.497

0.477

0.457

0.439

0.421

C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E
C
E

L
0.003
0.003
0.006
0.006
0.008
0.009
0.010
0.011
0.013
0.014
0.014
0.016
0.016
0.018
0.017
0.020
0.019
0.022
0.020
0.024
0.021
0.026
0.022
0.028
0.023
0.029
0.024
0.031
0.025
0.032
0.025
0.033
0.026
0.035
0.026
0.036
0.027
0.037
0.027
0.038

E
0.095
0.049
0.181
0.095
0.258
0.139
0.327
0.181
0.389
0.221
0.445
0.259
0.496
0.295
0.541
0.330
0.582
0.362
0.619
0.393
0.652
0.423
0.682
0.450
0.709
0.477
0.734
0.502
0.755
0.525
0.775
0.548
0.793
0.569
0.809
0.589
0.824
0.609
0.837
0.627

Ac
0.897
0.944
0.804
0.891
0.721
0.842
0.647
0.795
0.580
0.750
0.520
0.708
0.466
0.669
0.418
0.632
0.375
0.596
0.336
0.563
0.302
0.532
0.271
0.502
0.243
0.474
0.218
0.448
0.195
0.423
0.175
0.399
0.157
0.377
0.141
0.356
0.127
0.336
0.114
0.318

AE

0.005
0.004
0.009
0.007
0.013
0.010
0.016
0.013
0.018
0.015
0.020
0.016
0.022
0.017
0.023
0.018
0.024
0.019
0.024
0.019
0.025
0.020
0.025
0.020
0.025
0.020
0.025
0.020
0.025
0.020
0.024
0.019
0.024
0.019
0.023
0.018
0.023
0.018
0.022
0.018

Experimental
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active (Ac + AE) in control group, which is given by 0.897 + 0.005 = 0.902.
Similarly, the patients at risk in experimental group just prior to t = 0.1 is
given by 0.944 + 0.004 = 0.948. Hence, at tt = 0.2, the value of 0 can be
determined by 0 = 0.902/0.948 = 0.951. Similarly, the values of 0 at other
time points can be calculated. Once 0 is obtained, the value of 77 can be
calculated according to formula (7.4.3).

In the next step, we need to calculate 6>, which needs specification of
hazard rates within each interval. First, we know before t = 0.1, all pa-
tients in control group staying active in treatment (AE) and all patients in
the experimental group staying active in control (Ac)- According to our
assumption, the hazard rates for the two groups are given by 1 and 0.5, re-
spectively. Hence, 0 = 1. When t = 0.2, we know in the control group the
proportion of patients experienced events is 0.181 — 0.095 = 0.086. Hence
the hazard rate can be obtained by log(l —0.086)/0.1. Similarly, the hazard
rate in the experimental groups is given by log(l — (0.095 — 0.049))/0.1 =
log(l - 0.046)/O.I. Hence, the value of 0 is given by log(l - 0.086)/log(l -
0.046) = 1.986. The value of 0 at other time points can be obtained simi-
larly.

Finally, we need to calculate p^. First, we can notice that the total
events for the control and experimental groups are given by 0.837 and 0.627,
respectively. The events experienced in the first interval (ti = 0.1) for the
two groups are given by 0.095 and 0.049, respectively. Hence, the value of p
when ti = 0.1 is given by (0.095 + 0.049)/(0.837+0.627) = 0.098. When tt =
0.2, the event experienced in control is given by 0.181 —0.095 = 0.096. The
event experienced in experimental groups is given by 0.095 — 0.049 = 0.046.
Hence, the value of p can be obtained by (0.086+ 0.046)/(0.837 +0.627) =
0.090. The value of p at other time points can be obtained similarly.

Due to rounding error, the readers may not be able to reproduce ex-
actly the same number of the derived parameters (7, ry, p, 9, 0) as us by
performing appropriate operation on the first eight columns in Table 7.4.1.
However, by keeping enough decimal digits and following our instructions
given above, one should be able to reproduce exactly the same number as
us.

Once all the derived parameters are specified, we can calculated the
desired number of events according to (7.4.4), which gives d = 101.684 =
102. On the other hand, we can notice that the overall event rate for control
group is PC = 0.837 and for experimental groups is PE = 0.627. Hence,
the total sample size needed is given by

„ = M = 2 X 1°2 = 138.947« 139.
PE + PC 0.837 + 0.627
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7.5 Practical Issues

7.5.1 Binomial Versus Time-to-Event

In clinical trials, it is not common to define the so-called responder based
on the study endpoints. For example, in cancer trials, we may define a
subject as a responder based on his/or time to disease progression. We can
then perform an analysis based on the response rate to evaluate the treat-
ment effect. This analysis reduces to a two-sample problem for comparing
proportions as described in the previous chapters. However, it should be
noted that the analysis using the response rate, which is defined based on
the time-to-event data, is not as efficient as the analysis using the time-to-
event data, specially when the underlying distribution for the time-to-event
satisfies the exponential model or Cox's proportional hazards model.

7.5.2 Local Alternative Versus Fixed Alternative

The sample size calculation formulas for both Cox's proportional hazards
model or exponential model are all based on the so-called local alternatives
(see, Fleming and Harrington, 1991), which implies that the difference be-
tween treatment groups in terms of the parameters of interest (e.g., hazard
function or survival function) decrease to 0 at the rate of l/\/n, where
n is the total sample size. In practice, this is a dilemma because the al-
ternative hypothesis is always fixed, which dose not change as the sample
size changes. However, the sample size estimation for Cox's proportional
hazard model and the weighted log-rank test are derived based on local
alternatives. As a result, further research in sample size estimation based
on a fixed alternative is an interesting but challenging topic for statisticians
in the pharmaceutical industry.

7.5.3 One-Sample Versus Historical Control

Historical control is often considered in survival analysis when the clinical
trial only involves the test treatment. In practice, two approaches are
commonly employed. First, it is to treat the parameters estimated from
historical control (e.g., hazard rate, survival function, median survival time,
etc.) as fixed reference (true) values. Then, the objective of the study is
to compare the corresponding parameters of the test treatment with the
reference values. This is analogous to the one-sample problem discussed
in the previous chapters. Under the assumption that the time-to-event
is exponentially distributed, formulas can be similarly derived. Another
approach is to utilize the whole sample from the historical study. Then,
the standard testing procedure (e.g., log-rank test) will be used to assess
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the treatment effects. Some discussion on sample size determination for
this approach can be found in Emrich (1989) and Dixon arid Simon (1988).



Chapter 8

Group Sequential
Methods

Most clinical trials are longitudinal in nature. In practice, it is almost im-
possible to enroll and randomize all required subjects at the same time.
Clinical data are accumulated sequentially over time. As a result, it is of
interest to monitor the information for management of the study. In addi-
tion, it is of particular interest to obtain early evidence regarding efficacy,
safety, and benefit/risk of the test drug under investigation for a possible
early termination. Thus, it is not uncommon to employ a group sequential
design with a number of planned interim analyses in a clinical trial. The
rationale for interim analyses of accumulating data in clinical trials with
group sequential designs have been well documented in the Greenberg Re-
port (Heart Special Project Committee, 1988) more than three decades ago.
Since then, the development of statistical methodology and decision pro-
cesses for implementation of data monitoring and interim analyses for early
termination has attracted a lot of attention from academia, the pharma-
ceutical industry, and health authorities (see, e.g., Jennison and Turnbull,
2000).

Sections 8.1-8.4 introduce Pocock's test, O'Brien and Fleming's test,
Wang and Tsiatis' test, and the inner wedge test for clinical trials with
group sequential designs, respectively. Also included in these sections are
the corresponding procedures for sample size calculation. The application
of these tests to discrete study endpoints such as binary responses and
time-to-event data are discussed in Sections 8.5 and 8.6, respectively. In
Section 8.7, the concept of alpha spending function in group sequential
methods is outlined. Procedures for sample size re-estimation at a given
interim analysis without unblinding are examined in Section 8.8. In Section

185
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8.9, conditional powers at interim analyses are derived for the cases when
comparing means and proportions. Some practical issues are discussed in
the last section.

8.1 Pocock's Test

In clinical trials, a commonly employed statistical test for a group sequential
design with a number of interim analyses is to analyze accumulating data
at each interim analysis. This kind of test is referred to as a repeated sig-
nificance test (Jennison and Turnbull, 2000). In this section, we introduce
Pocock's test and the corresponding sample size calculation formula.

8.1.1 The Procedure

Pocock (1977) suggested performing a test at a constant nominal level to
analyze accumulating data at each interim analysis over the course of the
intended clinical trial. Suppose that the investigator is interested in con-
ducting a clinical trial for comparing two treatment groups under a group
sequential design with K planned interim analyses. Let xij be the observa-
tion from the jth subject in the ith treatment group, i — 1,2; j = 1, ...,n.
For a fixed i, it is assumed that Xjj's are independent and identically dis-
tributed normal random variables with mean /^ and variance of. Denote
by n/c the information (or the number of subjects) accumulated at the kth
(k — l,...,K) interim analysis. For simplicity, we further assume that at
each interim analysis, the numbers of subjects accumulated in each treat-
ment group are the same. Note that in practice, this assumption may not
hold. How to deal with unequal numbers of subjects accumulated in each
treatment group is a challenging to clinical scientists. One solution to this
problem is using Lan and DeMets' alpha spending function, which is dis-
cussed in Section 8.7.1. At each interim analysis, the following test statistic
is usually calculated

Note that of is usually unknown and it is usually estimated by the data
available up to the point of the interim analysis. At each interim analysis,
of is usually replaced with its estimates. Denote by Cp(K, a) the critical
value for having an overall type I error rate of a. Pocock's test can be
summarized as follows (see also Jennison and Turnbull, 2000):
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(1) After group k = 1,..., K - 1,

- if |Zfc| > Cp(K,a) then stop, reject #o;

— otherwise continue to group k + 1.

(2) After group K,

- i f \ Z K \ > Cp(K,a) then stop, reject H0;

— otherwise stop, accept HQ.

As an example, one Pocock type boundary for the standardized test statistic
is plotted in Figure 8.1.1.

As it can be seen that the critical value Cp (K., a] only depends upon the
type I error (a) and the total number of planned interim analysis (K), which
is independent of the visit number (k). In other words, for each planned
interim analysis, the same critical value is used for comparing treatment
difference using the standard test statistic Zfc. The value of Cp(K, a) is
choosing in such a way that the above test procedure has an overall type
I error rate of a under the null hypothesis that /_ii — ft? = 0. Since there
exists no explicit formula for calculation of Cp(K, a), a selection of various
values of Cp(K, a) under different choices of parameters (K and a) is given
in Table 8.1.1.

Table 8.1.1: Cp(K,a) for Two-Sided Tests with K Interim Analyses

K
I
2
3
4
5
6
7
8
9
10
11
12
15
20

a = 0.01
2.576
2.772
2.873
2.939
2.986
3.023
3.053
3.078
3.099
3.117
3.133
3.147
3.182
3.225

a = 0.05
1.960
2.178
2.289
2.361
2.413
2.453
2.485
2.512
2.535
2.555
2.572
2.588
2.626
2.672

a = 0.10
1.645
1.875
1.992
2.067
2.122
2.164
2.197
2.225
2.249
2.270
2.288
2.304
2.344
2.392
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Figure 8.1.1: Pocock Type Stopping Rule

On the other hand, under the alternative hypothesis (i.e., 9 ^ 0), the
power of the above test procedure can be determined by the total number
of planned interim analysis (A'), type I error rate (a), and type II error
rate (/3), and the proportion between <r2 and S2 (i.e., cr2 / 6 2 } , where 6 =
|/^i — li>2\- As discussed in the previous chapters, if there are no interim
analyses planned (i.e., K = 1), then the sample size is proportional to
cr2/82. As a result, it is sufficient to specify the ratio Rp(K,a,f3) of the
maximum sample size of the group sequential test to the fixed sample size.
The values of Rp(K,ot,(3} are given in Table 8.1.2. The maximum sample
size needed for a group sequential trial with K interim analyses can be
obtained by first calculating the fixed sample size without interim analyses,
and then multiplying it by Rp(K,a,/3}.

8.1.2 An Example

Suppose that an investigator is interested in conducting a clinical trial with
5 interim analyses for comparing a test drug (T) with a placebo (P). Based
on information obtained from a pilot study, data from the test drug and
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Table 8.1.2: RP(K,a,0) for Two-Sided Tests with K Interim Analyses

1 _ (3 = 0.8
K
I
2
3
4
5
6
7
8
9
10
11
12
15
20

a = 0.01
1.000
1.092
1.137
1.166
1.187
1.203
1.216
1.226
1.236
1.243
1.250
1.257
1.272
1.291

a = 0.05
1.000
1.110
1.166
1.202
1.229
1.249
1.265
1.279
1.291
1.301
1.310
1.318
1.338
1.363

a = 0.10
1.000
1.121
1.184
1.224
1.254
1.277
1.296
1.311
1.325
1.337
1.348
1.357
1.381
1.411

I- /? = 0.9
a = 0.01

1.000
1.084
1.125
1.152
1.170
1.185
1.197
1.206
1.215
1.222
1.228
1.234
1.248
1.264

a = 0.05
1.000
1.100
1.151
1.183
1.207
1.225
1.239
1.252
1.262
1.271
1.279
1.287
1.305
1.327

a = 0.10
1.000
1.110
1.166
1.202
1.228
1.249
1.266
1.280
1.292
1.302
1.312
1.320
1.341
1.367

the placebo seem to have a common variance, i.e., a2 = a\ = a\ = 4 with
HT — HP = 1- Assuming these observed values are true, it is desirable to
select a maximum sample size such that there is a 90% (! — /# = 0.90) power
for detecting such a difference between the test drug and the placebo at the
5% (a — 0.05) level of significance.

By the formula for sample size calculation given in Chapter 3, the re-
quired fixed sample size when there are no planned interim analyses is

(za/2 + ̂ )Vi + *§) (1-96 + 1.28)2(4 + 4)
Wfixed = ; ^ = To ~ °4-

Ol - ^2)2 I2

By Table 8.1.2, we have

flp(5,0.05,0.1) = 1.207.

Hence, the maximum sample size needed for the group sequential trial is
given by

nmax = #p(5,0.05,0.1)nfixed = 1-207 x 84 = 101.4.

Hence, it is necessary to have

n = nmax/K = 101.4/5 = 20.3 w 21

subjects per group at each interim analysis.
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8.2 O'Brien and Fleming's Test

Pocock's test is straightforward and simple. However, it is performed at
a constant nominal level. As an alternative to Pocock's test, O'Brien and
Fleming (1979) proposed a test, which is also based on the standardized
statistics Zk, by increasing the nominal significance level for rejecting HQ
at each analysis as the study progresses. As a result, it is difficult to reject
the null hypothesis at early stages of the trial.

8.2.1 The Procedure

O'Brien and Fleming's test is carried out as follows (see, also Jennison and
Turnbull, 2000):

(1) After group k = 1, • • • , K - 1,

— if \Zk\ > CB(K, o)\/K/k then stop, reject HQ;

— otherwise continue to group k + 1.

(2) After group K,

— if \ZK\ > CB(K,O) then stop, reject HQ;

- otherwise stop, accept HQ.

As an example, one O'Brien-Fleming type boundary is plotted in Figure
8.2.1. Note that the value of CB(K, a) is chosen to ensure that the over type
I error rate is a. Like Cp(K, en), there exists no closed form for calculating
CB(K, a). For convenience, a selection of various values of Cs(K, a) under
different choices of parameters are provided in Table 8.2.1.

Similar to the procedure for sample size calculation for Pocock's method,
the maximum sample size needed in order to achieve a desired power at a
given level of significance can be obtained by first calculating the sample size
needed for a fixed sample size design, and then multiplying by a constant
RB(K,a,f3}. For various parameters, the values of Rs(K,a,/3) are given
in Table 8.2.2.

8.2.2 An Example

Consider the example described in Section 8.1.2. Suppose that the inves-
tigator wish to perform the same group sequential test using O'Brien and
Fleming's test rather than Pocock's test. By Table 8.2.2,

,0.05,0.1) = 1.026.
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Figure 8.2.1: O'Brien-Fleming Type Stopping Rule

Reject H0

Since the required fixed sample size is given by nfixed = 84, the maximum
sample size needed for each treatment group is given by

nmax = #B(5,0.05,0.1)nfixed = 1-026 x 84 = 86.2 w 87.

Therefore, n = nmax/K — 87/5 = 21.4 w 24 subjects per treatment group
at each interim analysis is required for achieving a 90% power at the 5%
level of significance.

8.3 Wang and Tsiatis' Test

In addition to Pocock's test and O'Brien and Fleming's test, Wang and
Tsiatis (1987) proposed a family of two-sided tests indexed by the parameter
of A, which is also based on the standardized test statistic Z^. Wang and
Tsiatis' test include Pocock's and O'Brien-Fleming's boundaries as special
cases.
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Table 8.2.1: CB(K,a) for Two-Sided Tests with K Interim Analyses

K a = 0.01 a = 0.05 a = 0.10
1 2.576 1.960 1.645
2 2.580 1.977 1.678
3 2.595 2.004 1.710
4 2.609 2.024 1.733
5 2.621 2.040 1.751
6 2.631 2.053 1.765
7 2.640 2.063 1.776
8 2.648 2.072 1.786
9 2.654 2.080 1.794
10 1.660 2.087 1.801
11 2.665 2.092 1.807
12 2.670 2.098 1.813
15 2.681 2.110 1.826
20 2.695 2.126 1.842

Table 8.2.2: RB(K,a,[3] for Two-Sided Tests with K Interim Analyses

l-(3 = 0.8
K
1
2
3
4
5
6
7
8
9
10
11
12
15
20

a = 0.01
1.000
1.001
1.007
1.011
1.015
1.017
1.019
1.021
1.022
1.024
1.025
1.026
1.028
1.030

a = 0.05
1.000
1.008
1.017
1.024
1.028
1.032
1.035
1.037
1.038
1.040
1.041
1.042
1.045
1.047

a = 0.10
1.000
1.016
1.027
1.035
1.040
1.044
1.047
1.049
1.051
1.053
1.054
1.055
1.058
1.061

1-0 = 0.9
a = 0.01

1.000
1.001
1.006
1.010
1.014
1.016
1.018
1.020
1.021
1.022
1.023
1.024
1.026
1.029

a = 0.05
1.000
1.007
1.016
1.022
1.026
1.030
1.032
1.034
1.036
1.037
1.039
1.040
1.042
1.045

a = 0.10
1.000
1.014
1.025
1.032
1.037
1.041
1.044
1.046
1.048
1.049
1.051
1.052
1.054
1.057
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8.3.1 The Procedure

Wang and Tsiatis' test can be summarized as follows (see also Jennison and
Turnbull, 2000):

(1) After group k — 1, • • • , K — 1,

- if \Zk\ > CWT(K,a,&}(k/K}^-l/2 then stop, reject H0;

— otherwise continue to group k + 1.

(2) After group K,

— if \ZK\ > CWT(K,(X, A) then stop, reject HQ;

— otherwise stop, accept HQ.

As an example, the Wang-Tsiatis type boundary when A = 0.25 is given
in Figure 8.3.1. As it can be seen that Wang and Tsiatis' test reduces to
Pocock's test when A = 0.5. When A = 0, Wang and Tsiatis' test is the
same as O'Brien and Fleming's test. As a result, values of CWT(K,&, A)
with A = 0 and 0.5 can be obtained from Tables 8.1.1 and 8.2.1. Values of
CWT(K, a, A) when A = 0.1,0.25, and 0.4 are given in Table 8.3.1.

Table 8.3.1: CWT(K,a, A) for Two-Sided Tests with K
Interim Analyses and a = 0.05

K
1
2
3
4
5
6
7
8
9
10
11
12
15
20

A = 0.10
1.960
1.994
2.026
2.050
2.068
2.083
2.094
2.104
2.113
2.120
2.126
2.132
2.146
2.162

A = 0.25
1.960
2.038
2.083
2.113
2.136
2.154
2.168
2.180
2.190
2.199
2.206
2.213
2.229
2.248

A = 0.40
1.960
2.111
2.186
2.233
2.267
2.292
2.313
2.329
2.343
2.355
2.366
2.375
2.397
2.423
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Figure 8.3.1: Wang-Tsiatis Type Stopping Rule with A = 0.25

0.5 0.75

Sample size calculation for Wang and Tsiatis' test can be performed in
a similar manner as those for Pocock's test and O'Brien and Fleming's test.
First, we need to calculate the sample size for a fixed sample size design
with given significance level and power. Then, we multiply this sample size
by the constant of RWT(KI Q-s /3, A) whose values are given in Table 8.3.2.

8.3.2 An Example

For illustration, consider the same example given in Section 8.1.2. Suppose
that the investigator wishes to perform the same group sequential test using
Wang and Tsiatis' test with A = 0.25. By Table 8.3.2,

flM'T(5,0.05,0.1,0.25) = 1.066.

Since the fixed sample size is given by nfixed = 84, the maximum sample
size needed for each treatment group is given by

= -RB(5,0.05,0.1)nfixed = 1-066 x 84 = 89.5 w 90.
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Table 8.3.2: RWT(K,a,(3,&) for Two-Sided Tests with K
Interim Analyses and a = 0.05

!_/? = 0.8
K
I
2
3
4
5
6
7
8
9
10
11
12
15
20

A = 0.01
1.000
1.016
1.027
1.035
1.040
1.044
1.047
1.050
1.052
1.054
1.055
1.056
1.059
1.062

A = 0.05
1.000
1.038
1.054
1.065
1.072
1.077
1.081
1.084
1.087
1.089
1.091
1.093
1.097
1.101

A = 0.10
1.000
1.075
1.108
1.128
1.142
1.152
1.159
1.165
1.170
1.175
1.178
1.181
1.189
1.197

I- /? = 0.9
A = 0.01

1.000
1.014
1.025
1.032
1.037
1.041
1.044
1.046
1.048
1.050
1.051
1.053
1.055
1.058

A = 0.05
1.000
1.034
1.050
1.059
1.066
1.071
1.075
1.078
1.081
1.083
1.085
1.086
1.090
1.094

A = 0.10
1.000
1.068
1.099
1.117
1.129
1.138
1.145
1.151
1.155
1.159
1.163
1.166
1.172
1.180

Thus, at each interim analysis, sample size per treatment group required
for achieving a 90% power at the 5% level of significance is given by

n = = 90/5 = 18.

8.4 Inner Wedge Test

As described above, the three commonly used group sequential methods
allow early stop under the alternative hypothesis. In order words, the
trial is terminated if there is substantial evidence of efficacy. In practice,
however, if the trial demonstrates strong evidence that the test drug has no
treatment effect, it is also of interest to stop the trial prematurely. For good
medical practice, it may not be ethical to expose patients to a treatment
with little or no efficacy but potential serious adverse effects. In addition,
the investigator may want to put the resources on other promising drugs.
To allow an early stop with either substantial evidence of efficacy or no
efficacy, the most commonly used group sequential method is the so-called
two-sided inner wedge test, which is also based on the standardized test
statistics Zfc.
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8.4.1 The Procedure

The inner wedge test can be carried out as follows (see also Jennison and
Turnbull, 2000):

(1) After group k — 1,..., K - 1,

— if \Zk\ > bk then stop and reject HQ]

- \i\Zk\ < a A- then stop and accept HQ]

— otherwise continue to group k + 1.

(2) After group A",

- if |Zfc| > &K then stop and reject HQ]

— if |Zfc| < a K then stop and accept HQ.

Figure 8.4.1: Inner Wedge Type Stopping Rule with A — 0.25
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Table 8.4.1: Constants Cwi(K,a,p, A), Cw2(K,a,f3,&), and
Rw(K, a, (3, A) with a = 0.05 and 1 - (3 = 0.8

A K
-0.50 1

2
3
4
5
10
15
20

0.00 1
2
3
4
5
10
15
20

(^W\ Gj/i/2 RW

1.
1.
1.
1,
1
1
1
1
1
1
1
1,
1
1,
1
1

.960

.949

.933

.929

.927

.928

.931

.932

.960

.935

.950

.953

.958

.980

.991

.998

0.
0.
0.
0.
0
0
0
0
0.
0,
0,
0
1
1,
1.
1

.842

.867

.901

.919

.932

.964

.979

.988

.842

.948

.955

.995

.017

.057

.075

.087

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.000

.010

.023

.033

.041

.066

.078

.087

.000

.058

.075

.107

.128

.175

.198

.212

A K
-0.25 1

2
3
4
5
10
15
20

0.25 1
2
3
4
5
10
15
20

Cwi
1.960
1.936
1.932
1.930
1.934
1.942
1.948
1.952
1.960
1.982
2.009
2.034
2.048
2.088
2.109
2.122

C
0,
0
0,
0,
0
0
1
1
0
1
1
1
1
1
1
1

7^/2

.842

.902

.925

.953

.958

.999

.017

.027

.842

.000

.059

.059

.088

.156

.180

.195

RW
1.000
1.026
1.040
1.059
1.066
1.102
1.120
1.131
1.000
1.133
1.199
1.219
1.252
1.341
1.379
1.40

The constants a^ and bk are given by

ak =

As an example, one inner wedge type boundary is given in Figure 8.4.1. For
a given desired power (1 — /3), the sample size can be similarly determined.
First, we calculate the sample size required for a fixed sample size design,
denoted by nfixed- Then, nfixed is multiplied by Rw(K,ot,(3,&). Values of
Cw\(K, CK, Pi A), Cw2(K, a, P, A), and RW (K, en, /$, A) are given in Tables
8.4.1 and 8.4.2.

8.4.2 An Example

To illustrate sample size calculation based on the inner wedge test, consider
the following example. A group sequential trial with 5 (K = 5) interim
analyses is planned. The objective is to compare a test drug with a standard
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Table 8.4.2: Constants CWi(K,a,/3, A), CW2(K,a,p,&), and
Rw(K, a, /3, A) with a = 0.05 and 1 - /3 = 0.9

A K
-0.50 1

2
3
4
5
10
15
20

0.00 1
2
3
4
5
10
15
20

C/i/i/l &W2 RW

1.

1.

1.

1

1

1

1

1

1

1

1

1

1

2
2
2

.960

.960

.952

.952

.952

.958

.963

.967

.960

.958

.971

.979

.990

.013

.026

.034

1.
1,
1,
1
1
1
1
1
1
1
1
1
1
1
1
1

.282

.282

.305

.316
,326
.351
.363
.370
.282
.336
.353
.381
.385
.428
.447
.458

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.000

.000

.010

.016

.023

.042

.053

.060

.000

.032

.051

.075

.084

.127

.148

.160

A K
-0.25 1

2
3
4
5
10
15
20

0.25 1.
2
3
4
5
10
15
20

Cwi
1.960
1.957
1.954
1.958
1.960
1.975
1.982
1.988
1.960
2.003
2.037
2.058
2.073
2.119
2.140
2.154

C
1.
1,
1.
1,
1,
1,
1
1
1,
1
1
1
1
1
1
1

-Y

,282
.294
.325
.337
.351
.379
.394
.403
.282
.398
.422
.443
.477
.521
.551
.565

RW
1.000
1.006
1.023
1.033
1.043
1.071
1.085
1.094
1.000
1.100
1.139
1.167
1.199
1.261
1.297
1.316

therapy through a parallel trial. A inner wedge test with A = 0.25 is
utilized. Based on a pilot study, the mean difference between the two
treatments is 20% (//i — //2 = 0-2) and the standard deviation is 1.00 for
both treatments (a\ = 0-2 = 1). It is desirable to select a sample size to
achieve an 80% (1 — /3 = 0.80) power for detecting such a difference at the
5% (a = 0.05) level of significance. The sample size needed for a fixed
sample size design can be obtained as

(^o.975 + ^o.8o)2K + ^22) _ (1.96 + 0.84)2(1 + 1) _
ft — - — — 3V Z.

By Table 8.4.2,

™,nax = nf ixed#iy(5,0.05,0.2,0.25) = 392 x 1.199 = 470.

Hence, at each interim analysis, the sample size necessary per treatment
group is given by

"max 470
n = -=p = — = 94.

A 5
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8.5 Binary Variables

In this section we consider binary response variables.

8.5.1 The Procedure

Let xij be the binary response from the jth subject in the ith treatment
group. Within each treatment group (i.e., for a fixed i], £ij's are assumed
to be independent and identically distributed with mean Pi. Suppose that
there are K planned interim analyses. Suppose also that at each interim
analysis, equal number of subjects is accumulated in each treatment group.
At each interim analysis, the following test statistic is usually considered:

where

i-v^

and n/c is the number of subjects accumulated by the time of the kth interim
analysis. Since Zfc, k = l,...,/f, are asymptotically normally distributed
with the same distribution as that of Zfc's for the continuous response, the
repeated significance test procedures (e.g., Pocock, O'Brien-Fleming, and
Wang-Tsiatis) can also be applied for binary responses. The resulting test
procedure has an asymptotically type I error rate of a.

8.5.2 An Example

Suppose that an investigator is interested in conducting a group sequential
trial comparing a test drug with a placebo. The primary efficacy study
endpoint is a binary response. Based on information obtained in a pilot
study, the response rates for the test drug and the placebo are given by
60% (pi = 0.60) and 50% (p2 — 0.50), respectively. Suppose that a total
of 5 (K = 5) interim analyses are planned. It is desirable to select a
maximum sample size in order to have an 80% (1 - /3 = 0.80) power at
the 5% (a = 0.05) level of significance. The sample size needed for a fixed
sample size design is

"fixed — / \o(pi -P2)2

_ (1.96 + 0.84)2(0.6(1 - 0.6) + 0.5(1 - 0.5))
~ (0.6-0.5)2

w 385.
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If Pocock's test is used, then by Table 8.1.2, we have

rcmax = nfixed#p(5,0.05,0.20) = 385 x 1.229 w 474.

Hence, at each interim analysis, the sample size per treatment group is
474/5 = 94.8 w 95.

On the other hand, if O'Brien and Fleming's method is employed, Table
8.2.2 gives

nmax = nfixed^B(5,0.05,0.20) = 385 x 1.028 w 396.

Thus, at each interim analysis, the sample size per treatment group is
396/5 = 79.2 w 80.

Alternatively, if Wang and Tsitis' test with A = 0.25 is considered,Table
8.3.2 leads to

nmax = nfixed.RivT(5,0.05,0.20,0.25) = 385 x 1.072 w 413.

As a result, at each interim analysis, the sample size per treatment group
is given by 413/5 = 82.6 w 83.

8.6 Time-to-Event Data

To apply the repeated significance test procedures to time-to-event data,
for simplicity, we only consider Cox's proportional hazard model.

8.6.1 The Procedure

As indicated in Chapter 7, under the assumption of proportional hazards,
the log-rank test is usually used to compare the two treatment groups.
More specifically, let h(t) be the hazard function of treatment group A and
edh(t} be the hazard function of treatment group B. Let dk denote the
total number of uncensored failures observed when the fcth interim analysis
is conducted, k — 1,...,A'. For illustration purposes and without loss of
generality, we assume that there are no ties. Let r^fc be the survival times
of these subjects, I = l , . . . , d fc . Let r^.fc and rls,k be the numbers of
subjects who are still at risk at the fcth interim analysis at time r^jt for
treatment A and B, respectively. The log-rank test statistic at the fcth
interim analysis is then given by
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where 6iB,k — 1 if the failure at time T^ is on treatment B and 0 otherwise.
Jennison and Turnbull (2000) proposed to use N(Oik,Ik) to approximate
the distribution of Sk, where Ik is the so-called observed information and
is defined as

+ riB,k}2'

Then, the standardized test statistic can be calculated as

7 _k ~
As a result, Zk can be used to compare with the commonly used group
sequential boundaries (e.g., Pocock, O'Brien-Fleming, and Wang-Tsiatis) .
Under the alternative hypothesis, the sample size can be determined by first
finding the information needed for a fixed sample size design with the same
significance level and power. Then, calculate the maximum information
needed for a group sequential trial by multiplying appropriate constants
from Tables 8.1.2, 8.2.2, and 8.3.2.

8.6.2 An Example

Suppose that an investigator is interested in conducting a survival trial
with 5 (K = 5) planned interim analyses at the 5% level of significance
(a = 0.05) with an 80% (1-0 = 0.80) power. Assume that B = 0.405. As
indicated by Jennison and Turnbull (2000), the information needed for a
fixed sample size design is given by

, _ ( *a/2 + */Q2 _ (1.96 + 0.84)2 _
fixed~ 02 - 0.4052 -4/ '5-

If O'Brien and Fleming boundaries are utilized as stopping rule, then the
maximum information needed in order to achieve the desired power can be
calculated as

/max = /fixed X RB(K,(X,0) = 47.8 X 1.028 = 49.1,

where the value 1.028 of RB(5, 0.05, 0.2) is taken from Table 8.2.2. If 0
is close to 0, which is true under the local alternative, it is expected that
fiA,k ~ riB,k for each i. Hence, /^ can be approximated by 0.25dfc. It
follows that the number of events needed is given by

nd = ^™H = 196.4 w 197.
(J.Zo

Hence, a total number of 197 events are needed in order to achieve an 80%
power for detecting a difference of 0 = 0.405 at the 5% level of significance.
The corresponding sample size can be derived based on nd by adjusting for
some other factors, such as competing risk, censoring, and dropouts.
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8.7 Alpha Spending Function

One of the major disadvantages of the group sequential methods discussed
in the previous sections is that they are designed for a fixed number of
interim analysis with equally spaced information time. In practice, however,
it is not uncommon that the interim analysis is actually planned based on
calendar time. As a result, the information accumulated at each time point
may not be equally spaced. The consequence is that the overall type I error
may be far away from the target value.

As an alternative, Laii and DeMets (1983) proposed to distribute (or
spend) the total probability of false positive risk as a continuous function of
the information time in group sequential procedures for interim analyses. If
the total information is scheduled to accumulate over the maximum dura-
tion T is known, the boundaries can be computed as a continuous function
of the information time. This continuous function of the information time
is referred to as the alpha spending function, denoted by a(s). The alpha
spending function is an increasing function of information time. It is 0
when information time is 0; and is equal to the overall significance level
when information time is 1. In other words, a(0) = 0 and a(l) = a. Let
si and «2 be two information times, 0 < si < s? < 1. Also, denote a(s\)
and a(s2) as their corresponding value of alpha spending function at si and
82- Then, 0 < a ( s i ) < a(s2] < a. a(s\) is the probability of type I error
one wishes to spend at information time s\. For a given alpha spending
function (a(s)} and a series of standardized test statistic Zk,k = 1,..., K.
The corresponding boundaries c&, k = 1,..., K are chosen such that under
the null hypothesis

P(\Zi

Some commonly used alpha-spending functions are summarized in Table
8.7.1 and Figure 8.7.1 is used to illustrate a true alpha spending function.

Table 8.7.1: Various Alpha Spending Functions

rti(s) = 2{1 -3>(za/2/V2) O'Brien-Fleming
0:2(5) = alog[l + (e — l)s] Pocock
Q3(s) = ase,0 > 0 Lan-DeMets-Kim
Q4(s) = Q[(l - e<^)/(l - e~c)], C ̂  0 Hwang-Shih
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Figure 8.7.1: The Alpha Spending Function a(s)

We now introduce the procedure for sample size calculation based on
Lan-DeMets' alpha spending function, i.e.,

a(s) =ase,0 > 0.

Although alpha spending function dose not require a fixed maximum num-
ber and equal spaced interim analyses, it is necessary to make those assump-
tions in order to calculate the sample size under the alternative hypothesis.
The sample size calculation can be performed in a similar manner. For a
given significance level a and power 1 — /3, we can first calculate the sample
size needed for a fixed sample size design and then multiply it by a constant
RLD(K,O->P,P)- The values of RLD(K,a,fl,p) are tabulated in Table 8.7.2.

Consider the same example as discussed in Section 8.1. In order to
achieve a 90% power at the 5% level of significance, it is necessary to have
^fixed = 84 subjects per treatment group. Then, the maximum sample size
needed for achieving the desired power with 5 interim analyses using the
Lan-DeMets type alpha spending function with p = 2 can be calculated as

^rnax — ^fixed ,0.05,0.9,2) = 84 x 1.075 « 92.
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Table 8.7.2: RLD(K,a, 0, A) for Two-Sided Tests with K Interim
Analyses and a = 0.05

1-0 = 0.8
K
1
2
3
4
5
6
7
8
9
10
11
12
15
20

p = 0.01
1.000
1.082
1.117
1.137
1.150
1.159
1.165
1.170
1.174
1.178
1.180
1.183
1.188
1.193

p = 0.05 /
1.000
1.028
1.045
1.056
1.063
1.069
1.073
1.076
1.079
1.081
1.083
1.085
1.088
1.092

9=0.10

1.000
1.010
1.020
1.027
1.032
1.036
1.039
1.041
1.043
1.045
1.046
1.048
1.050
1.054

1 - 0 = 0.9
p = 0.01

1.000
1.075
1.107
1.124
1.136
1.144
1.150
1.155
1.159
1.162
1.164
1.166
1.171
1.176

p = 0.05 /
1.000
1.025
1.041
1.051
1.058
1.063
1.067
1.070
1.073
1.075
1.077
1.078
1.082
1.085

3 = 0.10

1.000
1.009
1.018
1.025
1.030
1.033
1.036
1.039
1.040
1.042
1.043
1.044
1.047
1.050

Thus, a total of 92 subjects per treatment group is needed in order to have
a 90% power at the 5% level of significance.

8.8 Sample Size Re-Estimation

In clinical trials with planned interim analyses, it is desirable to perform
sample size re-estimation at interim analyses. The objective is to deter-
mine whether the selected sample size is justifiable based on clinical data
accumulated up to the time point of interim analysis. In practice, however,
unblinding the treatment codes for sample size re-estimation may introduce
bias to remaining clinical trials. Shih (1993) and Shih and Zhao (1997) pro-
posed some procedures without unblinding for sample size re-estimation
with interim data for double-blind clinical trials with binary outcomes.

8.8.1 The Procedure

Suppose that yi,i = l , . . . ,n (treatment) and y j , j = n + 1,...,./V (control)
are observations from a randomized, double-blind clinical trial. It is as-
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sumed that yi and yj are distributed as B(\,pi) and B(l, P2), respectively.
Suppose that the hypotheses of interest are

H0 :pi = P2 versus Ha : pi ^ p2.

Further, suppose that N = In and a clinically meaningful difference is
A = \pi — P2\- Then, as discussed in Chapter 4, the sample size required
for achieving a desired power of (1 — (3) at a level of significance by an
unconditional method is given by

Oa/2 + Z(3)2[pi(l ~ Pi) + p2(l - P2)}
n = - A^ - '

As discussed in Chapter 4, there are two methods available for comparing
two proportions. They are, namely, conditional and unconditional meth-
ods. For illustration purposes, we only adopt the formula of unconditional
method. However, the procedure introduced below can easily be general-
ized to the conditional method. The estimated sample size can be obtained
by simply replacing p\ and p2 with their estimates. As a result, sample
size re-estimation at an interim analysis without unblinding is to obtain
estimates of p\ and p2 without revealing the treatment codes. For multi-
center trials, Shih (1993) and Shih and Zhao (1997) suggested the following
procedure for sample size re-estimation without unblinding when 50% of
the subjects as originally planned in the study protocol complete the trial.

First, within each center, each subject is randomly assigned to a dummy
stratum, i.e., either stratum A or stratum B. Note that this stratification
is not based on any of the subjects' baseline characteristics. The use of
dummy stratification is for sample size re-estimation at the interim stage
and statistical inference should not be affected at the end of the trial.
Now, subjects in stratum A are randomly allocated to the treatment group
with probability TT and to the control group with probability 1 — TT, where
TT 6 (0,0.5). Similarly, subjects in stratum B are randomly allocated to
the treatment group with probability 1 — TT and to the control group with
probability TT, where TT € (0, 0.5). Based on the pooled events rates observed
from each stratum, we then estimate p\ and p2 without unblinding the
treatment codes as follows. We use the results from stratum A to estimate

#1 = P(yj = 1 1 subject j e stratum A) = irpi 4- (1 — ^}p2

and that of stratum B to estimate

62 — P(yj = 1 (subject j G stratum B) — (1 — TT)PI +

Based on the observed events rate 9\ from stratum A and the observed
event rate 82 from stratum B, pi and p2 can be estimated by solving the
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following equations simultaneously:

Tipi -f (1 - ?r)p2 = 0i
(1 — 7T)pi + 7TP2 = 02-

Thus, the estimates of p\ and p2 are given by

TT^i — (1 — 7f)^2

and

7T^2 — (1 — 7T)01

Estimates p\ and p2 can then be used to update the sample size based on the
formula for sample size calculation given above. Note that if the resultant
sample size n* is greater than the originally planned sample size n (i.e.,
n* > n), it is suggested that an increase in sample size is necessary in order
to achieve the desired power at the end of the trial. On the other hand,
if n* < ?7i, a sample size reduction is justifiable. More details regarding
sample size re-estimation without unblinding the treatment codes can be
found in Shih and Zhao (1997).

8.8.2 An Example

Consider a cancer trial comparing the response rates (i.e., complete response
plus partial response) of patients between two treatments (i.e., test and
control). The trial was conducted in two centers (A and B) with 18 patients
each. At center A, each patient is assigned to the test treatment group
with a probability of 0.6 and the control group with a probability of 0.4.
At center B, each patient is assigned to the test treatment group with a
probability of 0.4 and the control group with a probability of 0.6. It follows
that TT = 0.4. One interim analysis was planned when half of patients (i.e.,
9 patients per center) completed the trial. At the time of interim analysis,
it is noted that the observed response rates for center A and B are given
by 0.6 (6>i = 0.6) and 0.5 (02 = 0.5), respectively. It follows that

0.4pi + 0.6p2 = 0.6
0.6pi + 0.4p2 = 0.5.

This gives p\ = 0.3 and p2 — 0.8. Hence, the sample size needed in order
to achieve a 90% ((3 = 0.10) at the 5% (a = 0.05) level of significance is
given by
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n =

- (1-96 + 1.64)2(0.3(1 - 0.3) + 0.8(1 - 0.8))
(0.3-0.8)2

w 20.

Hence, a total of 40 patients are needed in order to achieve the desired
power. This sample size re-estimation suggests that in addition to the
planned 36 patients, four more patients are necessarily enrolled.

8.9 Conditional Power

Conditional power at a given interim analysis in group sequential trials
is defined as the power of rejecting the null hypothesis at the end of the
trial conditional on the observed data accumulated up to the time point of
the planned interim analysis. For many repeated significance tests such as
Pocock's test, O'Brien and Fleming's test, and Wang and Tsiatis' test, the
trial can only be terminated under the alternative hypothesis. In practice,
this is usually true if the test treatment demonstrates substantial evidence
of efficacy. However, it should be noted that if the trial indicates a strong
evidence of futility (lack of efficacy) during the interim analysis, it is uneth-
ical to continue the trial. Hence, the trial may also be terminated under the
null hypothesis. However, except for the inner wedge test, most repeated
significance tests are designed for early stop under the alternative hypoth-
esis. In such a situation, the analysis of conditional power (or equivalently
futility analysis) can be used as a quantitative method for determining
whether the trial should be terminated prematurely.

8.9.1 Comparing Means

Let Xij be the observation from the jth subject (j = l , . . . ,nj) in the ith
treatment group (i — 1,2). X i j , j — l , . . . ,nj, are assumed to be indepen-
dent and identically distributed normal random variables with mean //j and
variance a\. At the time of interim analysis, it is assumed that the first
mi of HI subjects in the iih treatment group have already been observed.
The investigator may want to evaluate the power for rejection of the null
hypothesis based on the observed data and appropriate assumption under
the alternative hypothesis. More specifically, define

-, rrii
^ Aanfl

J=l
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At the end of the trial, the following Z test statistic is calculated:

Z = —,

V<?i/ni + v\ /n2

Under the alternative hypothesis, we assume //i > /^2. Hence, the power
for rejecting the null hypothesis can be approximated by

1-0 = P(Z > za/2)

= P > r
^ (n2-m2)g|

where

n2

I

(n2 -

As it can be seen from the above, the conditional power depends not only
upon the assumed alternative hypothesis (/ui , / /2) but also upon the ob-
served values (xa,i,xa.2) and the amount of information that has been ac-
cumulated (mi/Hi) at the time of interim analysis.

8.9.2 Comparing Proportions

When the responses are binary, similar formulas can also be obtained. Let
Xij be the binary response observed from the jth subject (j = 1, .. . ,nj) in
the Jth treatment group (i = 1,2). Again, Xij,j = 1, ...,n^, are assumed to
be independent and identically distributed binary variables with mean pi.
At the time of interim analysis, it is also assumed that the first ra^ of ni
subjects in the zth treatment group have been observed. Define

T — and
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At the end of the trial, the following Z test statistic is calculated:

ry _ Xl ~X2

Z/ — —
V*i(l - XI)/HI + x2(l - x2)/n2

Xi - X2

p2(l -
+ (n2 -

Under the alternative hypothesis, we assume p\ > p2. Hence, the power for
rejecting the null hypothesis can be approximated by

l-0 = P(Z> za/2)

= P\ ,. "' "2 >T

where

/mi m 2 , _
— - --(xa,

n\
-Pi} l (nz

-1/2

Similarly, the conditional power depends not only upon the assumed alter-
native hypothesis (pi,p2) but also upon the observed values (xa^,xa_2) and
the amount of information that has been accumulated (raj/n^) at the time
of interim analysis.

8.10 Practical Issues

The group sequential procedures for interim analyses are basically in the
context of hypothesis testing which is aimed at pragmatic study objectives,
i.e., which treatment is better. However, most new treatments such as can-
cer drugs are very expensive or very toxic or both. As a result, only if the
degree of the benefit provided by the new treatment exceeds some mini-
mum clinically significant requirement, it will then be considered for the
treatment of the intended medical conditions. Therefore, an adequate well-
controlled trial should be able to provide not only the qualitative evidence
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whether the experimental treatment is effective but also the quantitative
evidence from the unbiased estimation of the size of the effectiveness or
safety over placebo given by the experimental therapy. For a fixed sam-
ple design without interim analyses for early termination, it is possible to
achieve both qualitative and quantitative goals with respect to the treat-
ment effect. However, with group sequential procedure the size of benefit of
the experimental treatment by the maximum likelihood method is usually
overestimated because of the choice of stopping rule. Jennison and Turnbull
(1990) pointed out that the sample mean might not be even contained in
the final confidence interval. As a result, estimation of the size of treatment
effect has received a lot of attention. Various estimation procedures have
been proposed such as modified maximum likelihood estimator (MLE), me-
dian unbiased estimator (MUE) and the midpoint of the equal-tailed 90%
confidence interval. For more details, see Cox (1952), Tsiatis et al., (1984),
Kim and DeMets (1987), Kim (1989), Chang and O'Brien (1986), Chang
et al. (1989), Chang (1989). Hughes and Pocock (1988), and Pocock and
Hughes (1989).

The estimation procedures proposed in the above literature require ex-
tensive computation. On the other hand, simulation results (Kim, 1989;
Hughes and Pocock, 1988) showed that the alpha spending function corre-
sponding to the O'Brien-Fleming group sequential procedure is very con-
cave and allocates only a very small amount of total nominal significance
level to early stages of interim analyses, and hence, the bias, variance, and
mean square error of the point estimator following O'Brien-Fleming proce-
dure are also the smallest. Current research mainly focus upon the estima-
tion of the size of the treatment effect for the primary clinical endpoints on
which the group sequential procedure is based. However, there are many
other secondary efficacy and safety endpoints to be evaluated in the same
trial. The impact of early termination of the trial based on the results from
primary clinical endpoints on the statistical inference for these secondary
clinical endpoints are unclear. In addition, group sequential methods and
their followed estimation procedures so far are only concentrated on the
population average. On the other hand, inference of variability is some-
times also of vital importance for certain classes of drug products and dis-
eases. Research on estimation of variability following early termination is
still lacking. Other areas of interest for interim analyses include clinical tri-
als with more than 2 treatments and bioequivalence assessment. For group
sequential procedures for the trials with multiple treatments, see Hughes
(1993) and Proschan et al. (1994). For group sequential bioequivalence
testing procedure, see Gould (1995).

In practice, one of the most commonly used methods for sample size
estimation in group sequential trials is to consider the most conservative
scenario. In other words, we assume that the trial will not be stopped
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prematurely. Let CK be the critical value for final analysis. Then, we reject
the null hypothesis at the a level of significance if and only if | ZK \ > CK •
Under the null hypothesis, however, the type I error rate is no longer a.
Instead it becomes

a* = P(\ZK\ > CK}.

Hence, the sample size for achieving a desired power can be estimated by
adjusting a to a*. This method has the merit of simplicity. Besides, it
works well if CK ~ Za/2- However, if CK » Za/2, the resulting sample
size could be very conservative.





Chapter 9

Comparing Variabilities

In most clinical trials comparing a test drug and a control (e.g., a placebo
control or an active control), treatment effect is usually established by com-
paring mean response change from the baseline of some primary study end-
points, assuming that their corresponding variabilities are comparable. In
practice, however, variabilities associated with the test drug and the control
could be very different. When the variability of the test drug is much larger
than that of the reference drug, safety of the test drug could be a concern.
Thus, in addition to comparing mean responses between treatments, it is
also of interest to compare the variabilities associated with the responses
between treatments.

In practice, the variabilities are usually classified into two categories,
namely, the intra-subject (or within subject) variability and the inter-
subject (or between subject) variability. Intra-subject variability refers to
the variability observed from repeated measurements from the same sub-
ject under the same experimental conditions. On the other hand, inter-
subject variability is the variability due to the heterogeneity among sub-
jects. The total variability is simply the sum of the intra- and inter-
subject variabilities. In practice, it is of interest to test for equality, non-
inferiority/superiority, and similarity between treatments in terms of the
intra-subject, inter-subject, and/or total variabilities. The problem of com-
paring intra-subject variabilities is well studied by Chinchilli and Esinhart
(1996) through an F statistic under a replicated crossover model. A similar
idea can also be applied to comparing total variabilities under a parallel de-
sign without replicates. However, how to compare inter-subject and total
variabilities under a crossover design is still challenging to biostatisticians
in clinical research.

The remaining of this chapter is organized as follows. In the next two

213
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sections, formulas for sample size calculation for comparing intra-subject
variabilities and intra-subject CVs are derived, respectively, under both
replicated crossover designs and parallel designs with replicates. Sections
9.3 and 9.4 provide formulas for sample size calculation for comparing
inter-subject variabilities and total variabilities, respectively, under both
crossover designs and parallel designs. Some practical issues are discussed
in the last section.

9.1 Comparing Intra-Subject Variabilities

To assess intra-subject variability, replicates from the same subject are nec-
essarily obtained. For this purpose, replicated crossover designs or parallel
group designs with replicates are commonly employed. In what follows, sta-
tistical tests for comparing intra-subject variabilities under a parallel design
with replicates and a replicated crossover design (e.g., a 2 x 4 replicated
crossover design) are studied.

9.1.1 Parallel Design with Replicates

Let Xijk be the observation of the kth replicate (k = l, . . . ,m) of the jth
subject (j = 1, ...,n.j) from the zth treatment (i =T, R). It is assumed that

Xijk = p-i + Sij + Bijk, (9.1.1)

where \ii is the treatment effect, S^ is the random effect due to the jth
subject in the ith treatment group, and e^fc is the intra-subject variability
under the ith treatment. It is assumed that for a fixed z, Sij are indepen-
dent and identically distributed as normal random variables with mean 0
and variance cr^-, and e^k^k — l, . . . ,m, are independent and identically
distributed as a normal random variable with mean 0 and variance ff^Vi.
Under this model, an unbiased estimator for o^Vi is given by

j* - ̂ -)2' (9'L2)
= l k=l

where
..

m
(9.1.3)

It can be seen that n%(m — l^^/a^ is distributed as a X^ (m-i) random
variable.
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Test for Equality

In practice, it is often of interest to test whether two drug products have
the same intra-subject variability. The following hypotheses are then of
interest:

±1 Q \ @ \ATrr — ^WR V6rSUS ±1 d . ^\\^r]~' ~/ ®\y f? •

A commonly used test statistic for testing the above hypotheses is given by

y _ aWT
~ 2
aWR

Under the null hypothesis, T is distributed as an F random variable with
77/r(ra — 1) and n#(ra — 1) degrees of freedom. Hence, we reject the null
hypothesis at the a level of significance if

-L ^ -^a/2,nT(m — l),nR(m—l)

or
T1 <**" J?

1 — Q!/2,Tl7~' (^— 1) )^lR (^ — 1) '

where -Fa/2,nT(m-i),nR(m-i) is the upper (a/2)th quantile of an F distribu-
tion with nr(m — 1) and n#(m — 1) degrees of freedom. Under the alter-
native hypothesis, without loss of generality, we assume that er^T < °^WR-
The power of the above test is

Power = P(T < Fi_a /2,nT(m-i) inR(m_i))
= P(l/T ~> F \}

P I W Rl W R >. WT p
~~ -* 1 -2 //T2 ,-2 - ra/2,nR(m-l),nT(m-]

V^WT/^WT aW.R

— -* ' ^nR(m — l),nx(fn — 1) ^ ^ -^ m / 9 n D^m.—1 V
WR

where Fa^ denotes an F random variable with a and b degrees of freedom.
Under the assumption that n = HR = UT and with a fixed cr^/T and crj^,
the sample size needed in order to achieve a desired power of 1 — /3 can be
obtained by solving the following equation for n:

aWR Fa/2,n(m-l),n(m-l)

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

. ,-. TT s> 6 versus Ha : - < 6.
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When 6 < 1. the rejection of the null hypothesis indicates the superiority of
the test product over the reference in terms of the intra-subject variability.
When 6 > 1, the rejection of the null hypothesis indicates the non-inferiority
of the test product over the reference. The test statistic is given by

TWTT =

Under the null hypothesis, T is distributed as an F random variable with
nT(m — 1) and n#(m — 1) degrees of freedom. Hence, we reject the null
hypothesis at the a level of significance if

Under the alternative hypothesis that GWT/^WR < ^' the Power °f the
above test is

Power — P(T < -F\-a.nr(m-i).nfi(m-i))
= P(I IT "> F1 "i•* \i/ -1- ^-ra,nft.(m — l),nT(m—l)j

' - 2 / 2 2
aWR/aWR ^ °WT

I ^ 2 / 2 ^ x 2 ^a.nfi(m— l ) .nj ' (m— 1)
aWT/aWT 0<JWR

— P (P -^ aWT F 1
I r i R ( m — l ) , n - j ' ( m — 1) -^" ^2 2 a , r iH(iTi—l) ,n ' j - (m —1) I •
V " aWR '

Under the assumption that n = UT — nft, the sample size needed in order
to achieve a desired power of 1 — J3 at the a level of significance can be
obtained by solving the following equation for n:

" ff\VR -^Q,n(m-l),n(m-l)

Test for Similarity

For testing similarity, the following hypotheses are usually considered:

#0 : £ > ,5 or £ < i j versus

\VR \VR " aWR

where 6 > 1 is the similarity limit. The above hypotheses can be decom-
posed into the following two one-sided hypotheses:

and

&WT . r- rj <-- > o versus tia\ : - < d,

„ <?WT , TTH02 : - < - versus Ha2 : - > .
VWR o
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These two one-sided hypotheses can be tested by the following two test
statistics:

™ &WT , rr, SVWTTI = — - and T2 = - - .
0&WR &WR

We then reject the null hypothesis and conclude similarity at the a level of
significance if

Tl < -Fl-a,nT(m-l),nR(m-l) and TI > ^a,nT(m-l),nR(m-l) •

Assuming that n = UT = nn and cr^T < cr^fi, the power of the above test
is

T» r-> / ^a,n(m — l),n(m — 1) ®WT - r2 r?Power = P - i — -^-i - ̂ < Tf^- < <rFi_a ) n ( m_i ) ) n ( m_i)
V ° aw^

" - < ^ ^o 2 l-a,n(m-l),n(m-l)
-a,n(m-l),n(m-l)() aWR

( * 2 \
^VKfl ^ f 2 IT \
^2 - > 0 ̂ l-a,n(m-l),n(m-l) I
^VVT /

^ a

\VR

Thus, a conservative estimate for the sample size required for achieving a
desired power of 1 — (3 can be obtained by solving the following equation
for n:

An Example

Suppose that an investigator is interested in conducting a two-arm parallel
trial with 3 (ra = 3) replicates per subject to compare the variability of
an inhaled formulation of a drug product (treatment) with a subcutaneous
(SC) injected formulation (control) in terms of AUG. In practice, it is ex-
pected that the inhaled formulation has smaller intra-subject variability as
compared to that of SC formulation. Based on PK data obtained from pilot
studies, it is assumed the true standard deviation of treatment and control
are given by 30% (<TWT = 0.30) and 45% (<TWR = 0.45), respectively. It is
also believed that 10% (6 = 1.1) of VWR ls of no clinical importance. Hence,
for testing non-inferiority, the sample size per treatment needed in order to
achieve an 80% power at the 5% level of significance can be obtained by
solving the following equation:

0-302 _ -Fp.80,2n,2n

1.12X0.452 ~ F0.05,2n,2n'
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The solution can be obtained by a standard numerical iteration technique,
such as the simple grid search, which gives n = 13.

9.1.2 Replicated Crossover Design

Compared with the parallel design with replicates, the merit of a crossover
design is the ability to make comparisons within subjects. In this section,
without loss of generality, consider a 2 x 2m replicated crossover design
comparing two treatments. For convenience, we refer to the two treatments
as a test formulation and a reference formulation. Under a 2 x 2m replicated
crossover design, in each sequence, each subject receives the test formulation
m times and the reference formulation m times at different dosing periods.
When m = 1 , the 2 x 2m replicated crossover design reduces to the standard
two-sequence, two-period (2 x 2) crossover design. When m — 2, the 2 x 1m
replicated crossover design becomes the 2 x 4 crossover design recommended
by the FDA for assessment of population/individual bioequivalence (FDA,
2001).

Suppose that n\ subjects are assigned to the first sequence and n<2 sub-
jects are assigned to the second sequence. Let Xijki be the observation from
the jfth subject (j — l . . . . ,rij) in the zth sequence (i = 1,2) under the Ith
replicate (I = l , . . . ,m) of the kth treatment (k = T,R). As indicated in
Chinchilli and Esinhart (1996), the following mixed effects model can best
describe data observed from the 2 x 2m replicated crossover design:

Xijki = Hk + liki + Sijk + eijfci , (9.1.4)

where //^ is the treatment effect for formulation k, 7^ is the fixed effect of
the Ith replicate on treatment k in the zth sequence with constraint

££7*1 =
i=l 1=1

SijT and SijR are the random effects of the jth subject in the iih sequence,
(SijT, Sljfi)^s are independent and identically distributed bivariate normal
random vectors with mean (0,0)' and covariance matrix

P&BT&BR &BR

Cjjfc / ' s are independent random variables from the normal distribution with
mean 0 and variance &\VT or cr^/fi, and the (S^T, S^R)' and eijki are inde-
pendent. Note that a2

BT and <7gft are the inter-subject variances and <r^/y
and &\VR are intra-subject variances.
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To obtain estimators of intra-subject variances, it is a common practice
to use an orthogonal transformation, which is considered by Chinchilli and
Esinhart (1996). A new random variable z^jy can be obtained by using the
orthogonal transformation

zijk = P'xtffc (9.1.5)

where

/ / ~, \ „> /~ ,, \
ijk — \Xijkl 5 Xijk2 •> • • • •> Xijkm)i ijk — \Zijkl i Zijk2i • • • i Zijkm)

and P is an m x m orthogonal matrix, i.e., P'P is a m x m diagonal
matrix. The first column of P is usually defined by the vector ^-(1,1,. ..,!)'
to obtain z^ki = Xijk. The other columns can be defined to satisfy the
orthogonality of P and Var(zijki) — &wi ^or ^ = 2, ...,m. For example, in
the 2 x 4 crossover design, the new random variable z^ki can be defined as

_ ,
xk. and Z i k 2 / •

Now, the estimator of intra-subject variance can be defined as

1

(ni + n* - 2)(m

where

It should be noted that &WT an(i &WR are independent.

Test for Equality

The following hypotheses are usually considered for testing equality in intra-
subject variability:

TJ . ^2 _ Jl ,«,r.o,lo IT . ^2 I J2•"0 • ®WT — ®WR verbub na . (Jyyj, ^= ^WR-

Under the null hypothesis, the test statistic

T =
aWT

TWR
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is distributed as an F random variable with d and d degrees of freedom,
where d — (n\ + n^ — 2)(m — 1). Hence, we reject the null hypothesis at
the a level of significance if

T > Fa/2,d,d

or

Under the alternative hypothesis, without loss of generality, we assume that
<?wT < °\\rR • The power of the above test is

power — P(T < Fi_a/2,d,d)

— P(l/T > F /o v w)•*• V 1 / -*- -^ •*• a/2, a, d)

D ( °WR/aWR ^ (

U?VT/^T ' <

( °"2

V ' <*$*, R

72

7WR

-i

"a/2,d,d

Under the assumption that n — n\ = n^ and with fixed o\7T and cr^fl,
the sample size needed in order to achieve a desired power of 1 — /3 can be
obtained by solving the following equation for n:

aWR Fa/2.(2n-2)(m-l),(2n-2)(m-l)

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

HQ : > 6 versus Ha : < 8.

When <5 < 1, the rejection of the null hypothesis indicates the superiority
of test product over the reference in terms of the intra-subject variabil-
ity. When 8 > 1, the rejection of the null hypothesis indicated the non-
inferiority of the test product over the reference. Consider the following
test statistic:

jn _ &WT

Under the null hypothesis, T is distributed as an F random variable with
d and d degrees of freedom. Hence, we reject the null hypothesis at the a
level of significance if

J- *C -T 1 —n d rl-
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Under the alternative hypothesis that &wT/ffWR < ^» tne Power of the
above test is

Power = P(T < Fi_a,d)d)

= P(l/T > Fa,dfd)

_ p °WR/aWR ^ a

~ •ra,d,d
WRWR ^ WT

~ 2 / 2 s 2 •
aWT/aWT 0aWR

WT= p

Thus, under the assumption that n — n\ = n^, the sample size needed in
order to achieve a desired power of 1 — /3 at the a level of significance can
be obtained by solving the following equation for n:

Test for Similarity

For testing similarity, the hypotheses of interest are given by

TT &WT ^ s- &WT / , / c - TT 1 „ CTVVT/f0 : - > 6 or - < 1/8 versus H a : - < - <
VWR awn b

where S > 1 is the equivalence limit. The above hypotheses can be decom-
posed into the following two one-sided hypotheses:

> 6 versus Ha\ : < 8,

and
TJ OWT ^ 1 TT &WT ^ 1-"02 : < 7 versus Ha2 : > 7.

UWR 0

These two hypotheses can be tested by the following two test statistics:

5 &
WR "WR

We then reject the null hypothesis and conclude similarity at the a level of
significance if

T\ < Fi-a,d,d and T2 > Fa,djd.

Assuming that n = m = n2, under the alternative hypothesis that cr'^VT <
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&WRI the power of the above test is

f F <72

Power = P f -^r^— < ^yT < SFi-a c
\ A XT'- '

( ~ 2 \
^Wfl ^ r2 IT. \
— 5 - > 0 ri-a.d,d
°WT J

£ <7yt
> -

Hence, a conservative estimate for the sample size needed in order to achieve
the power of 1 — (5 can be obtained by solving the following equation:

- 9/2,(2n-2)(m-l),(2n-2)(m-l)

WR

An Example

Consider the same example regarding comparison of intra-subject variabil-
ities between two formulations (i.e., inhaled and SC) of a drug product as
described in the previous subsection. Suppose the intended study will be
conducted under a 2 x 4 replicated crossover (m = 2) design rather than a
parallel design with 3 replicates.

It is assumed that the true standard deviation of inhaled formulation
and SC formulation are given by 30% (<JWT = 0.30) and 45% (&WR = 0.45),
respectively. It is also believed that 10% (8 = 1.10) of CTWR is of no clinical
importance. Hence, the sample size needed per sequence in order to achieve
an 80% power in establishing non-inferiority at the 5% level of significance
can be obtained by solving the following equation:

0.30 -TO 80 9 n — 9 9« —9

l.l2 X0.452 F0.05,2n-2!2n-2'

This gives n = 14.

9.2 Comparing Intra-Subject CVs

In addition to comparing intra-subject variances, it is often of interest to
study the intra-subject CV, which is a relative standard deviation adjusted
for mean. In recent years, the use of intra-subject CV has become increas-
ingly popular. For example, the FDA defines highly variable drug products
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based on their intra-subject CVs. A drug product is said to be a highly
variable drug if its intra-subject CV is greater than 30%. The intra-subject
CV is also used as a measure for reproducibility of blood levels (or blood
concentration-time curves) of a given formulation when the formulation is
repeatedly administered at different dosing periods. In addition, the in-
formation regarding the intra-subject CV of a reference product is usually
used for performing power analysis for sample size calculation in bioavail-
ability and bioequivalence studies. In practice, two methods are commonly
used for comparing intra-subject CVs. One is proposed by Chow and Tse
(1990), which is referred to as conditional random effects model. The other
one is suggested by Quan and Shih (1996), which is a simple one-way ran-
dom effects model. In this section, these two models are introduced and
the corresponding formulas for sample size calculation are derived.

9.2.1 Simple Random Effects Model

Quan and Shih (1996) developed a method to estimate the intra-subject CV
based on a simple one-way random mixed effects model. Comparing this
model with model (9.2.1), it can be noted that the mixed effects model as-
sumes that the intra-subject variability is a constant. An intuitive unbiased
estimator for ̂  is given by

1 Hi m
* \ ^ \ ^= % -

1 j=l fc=l

Hence, an estimator of the intra-subject CV can be obtained as

CV - °Wi
^ y^ - — __— ^

Pi

By Taylor's expansion, it follows that

2 \
i - aWi)

P7

Hence, by the Central Limit Theorem, CVi is asymptotically distributed as
a normal random variable with mean CVi and variance (j*2/nj, where

, _ ^t/ ,
1 -- 1~ — ~ — ̂  v i ~r* 1m l

An intuitive estimator of cr*2 is given by

1
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Test for Equality

The following hypotheses are usually considered for testing equality in intra-
subject CVs:

HQ : CVT = CVR versus Ha : CVT / CVR.

Under the null hypothesis, the test statistic

T =

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the a level of significance if \T\ > za/2.
Under the alternative hypothesis, without loss of generality, it is assumed
that CVp > CVR. The distribution of T can be approximated by a normal
distribution with unit variance and mean

CVT - CVR

Thus, the power is approximately

P(\T\ > za/2) w P(T > za/2)

CVT-CVR= 1 - $ za/2 - —=

Under the assumption that n — n\ — n2, the sample size needed in order
to have a power of 1 — (3 can be obtained by solving the following equation:

CVT - CVR
Za/2 / *2/ *2/ = ~~Z(3'

This leads to

(cvT -

Test for Non-Inferiority/Superiority

Similarly, the problem of testing non-inferiority and superiority can be uni-
fied by the following hypotheses:

HQ : CVR - CVT < 8 versus Ha : CVR - CVT > 5,

where 6 is the non-inferiority/superiority margin. When 6 > 0, the rejection
of the null hypothesis indicates the superiority of the test drug over the
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reference drug. When 6 < 0, the rejection of the null hypothesis indicates
that non-inferiority of the test drug over the reference drug.

Under the null hypothesis, the test statistic

CVT-CVR-5

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the a level of significance if T > za. Under
the alternative hypothesis, the distribution of T can be approximated by a
normal distribution with unit variance and mean

CVT - CVR - 6

Hence, the power is approximately

CVT-CVR-8
P(T > za/2) = 1 - $ lz a / 2 -

Under the assumption that n = n\ — n<2, the sample size needed in order
to have a power of 1 — (3 can be obtained by solving

CVT - CVR - 8 __

This leads to
(a?j? + cr*F?}(za/2 + zg}2

n =
(CVT - CVR -8}2 '

Test for Similarity

For testing similarity, the following hypotheses are usually considered:

HQ : \CVT - CVR\ > 8 versus Ha : \CVT - CVR\ < 8.

The two drug products are concluded similar to each other if the null hy-
pothesis is rejected at a given significance level. The null hypothesis is
rejected at the a level of significance if

CVT - CVR + 8 CVT - CVR - 8
, „ , = > Zn, and , „ . = <c zn.

Under the alternative hypothesis that |CVr — CVR\ < 8, the power of the
above test procedure is approximately
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Hence, under the assumption that n = n\ = 712, the sample size needed in
order to achieve 1 — 3 power at the a level of significance can be obtained
by solving

6 - \CVT - CVR\

This gives

An Example

i \2 i *2 #2 ^

(6 - \CVT - CVR\Y

Consider the same example as described in the previous subsection. Sup-
pose the investigator is interested in conducting a parallel trial to compare
intra-subject CVs between the inhaled formulation and SC formulation of
the drug product under investigation rather than comparing intra-subject
variabilities. Based on information obtained form a pilot study, it is as-
sumed that the true CV of the treatment and control are given by 50% and
70%, respectively. Assume that 10% difference in CV is of no clinical im-
portance. The sample size needed per treatment group in order to establish
non-inferiority can be obtained as follows:

o\ = 0.25 x 0.502 + 0.504 = 0.125

a\ = 0.25 x 0.702 + 0.704 = 0.363.

Hence, the sample size needed in order to achieve an 80% power for Estab-
lishment of non-inferiority at the 5% level of significance is given by

'Tl — —

(1.64 + 0.84)2(0.125 + 0.363)
------- -I-- ---.-.TILT..-..-..!.-^ - — - . -H - -T - - IT - -. . . . . . - . . . - - —

(0.10 + 0.70 -0.50)

9.2.2 Conditional Random Effects Model

In practice, the variability of the observed response often increases as the
mean increases. In many cases, the standard deviation of the intra-subject
variability is approximately proportional to the mean value. To best de-
scribe this type of data, Chow and Tse (1990) proposed the following con-
ditional random effects model:

Xijk = Aij + AijCijk, (9.2.1)

where xiyk is the observation from the kth replicate (k — l,...,ra) of the
jth subject (j = 1, . . . ,nj) from the ith treatment (i =T, R), and A^ is the
random effect due to the jth subject in the ith treatment. It is assumed
that AXJ is normally distributed as a normal random variable with mean
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Hi and variance a^Bi and e^ is normally distributed as a normal random
variable with mean 0 and variance cr^. For a given subject with a fixed
AIJI Xijk is normally distributed as a normal random variable with mean
Aij and variance Acr^Vi. Hence, the CV for this subject is given by

As it can be seen, the conditional random effects model assumes the CV is
constant across subjects.

Define

~ rii m
1 v - v

-1-- — nm / /
^- -'
}=l k=l

Hi
m

J-

' V ' / -• — 1 r, i
J — L *v—J

It can be verified that

E(Mn) = (£

It follows that

Hence, an estimator of CVi is given by

I xl. + (MH - Mt2)/m'

By Taylor's expansion,

^ '^2-4)-^j2(^.. -

- r?2),
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where

2mr?1

As a result, the distribution of CVL can be approximated by a normal
random variable with mean CVi and variance a*2/rij, where

*2 — * s ° 'cr, = var
^ '•> -'"' m _ 1 Z_^

An intuitive estimator for cr*2 is the sample variance, denoted by a*2, of

i m

' - ' ' /- - \ 2 . fc2 _ V~V _ -. \2 o — 1
]_ ^L^^ I3k 'l'J'> ' • ? " " ' "•' *'

Test for Equality

For testing equality, the following hypotheses are of interest:

Ho : CVT = CVR versus Ha : CVT ^ CVR.

Under the null hypothesis, test statistic

T= CVT- CVR

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the a level of significance if \T\ > za/2-
Under the alternative hypothesis, without loss of generality, we assume
that CVp > CVR. The distribution of T can be approximated by a normal
distribution with unit variance and mean

CVT - CVR

Hence, the power is approximately

P(\T\ > za/2) « P(T > za/2]

, * ( cvT~ cvR
a/2
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Under the assumption that n = n\ = n^, the sample size required for
having a desired power of 1 — /3 can be obtained by solving

_ CVT - CVR

This leads to
(za/2 + Z0) (°T + ff*R )n =

(CVT-

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

HQ : CVR - CVT < S versus Ha : CVR - CVT > 8,

where 8 is the non-inferiority/superiority margin. When S > 0, the rejection
of the null hypothesis indicates the superiority of the test drug over the
reference drug. When S < 0, the rejection of the null hypothesis indicates
that non-inferiority of the test drug over the reference drug. Under the null
hypothesis, test statistic

CVT - CVR - 8

is asymptotically distributed as a standard normal random variable. Hence,
we reject the null hypothesis at the a level of significance if T > za . Under
the alternative hypothesis, the distribution of T can be approximated by a
normal distribution with unit variance and mean

CVT - CVR - 8

Hence, the power is approximately

CVT-CVR-6
P(T > za/2) = 1 - $ za/2z -

Under the assumption n — n\ = nz, the sample size needed in order to
have the desired power 1 — j3 can be obtained by solving

_ CVT - CVR - 8 _

^/cr?j?/n + &*R /n

This gives
_n (cvT - CVR
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Test for Similarity

For testing similarity, consider the following hypotheses:

HQ : \CVT - CVR\ > 8 versus Ha : \CVT - CVR\ < 6.

The two drug products are concluded to be similar to each other if the null
hypothesis is rejected at a given significance level. The null hypothesis is
rejected at a level of significance if

CVT - CVR + (5 CVT - C¥R - 5
, „ . > zn versus , _

Under the alternative hypothesis that \CVr — CVR\ < 5, the power of
the above test procedure is approximately

2 S-\CVT-CVR\ \

Hence, under the assumption that n = n\ = n-2, the sample size needed in
order to achieve 1 — j3 power at the a level of significance can be obtained
by solving

S-\CVT-CVR\
—

This gives
-, i -v ^za + zp/2)

- \CVT - CVR\)* '

An Example

Consider the same example as described in the previous subsection. Sup-
pose it is found that the variability of the CV increases as the mean in-
creases. In this case, the conditional random effects model is useful for
comparing the two treatments. Again, we assume that CV of the test drug
and the reference drug are given by 50% and 70%, respectively. Suppose
it is also estimated from other studies that a^ = 0.30 and a*R — 0.35. As-
sume that 10% difference in CV is of no clinical importance. The sample
size needed per treatment group in order to establish non-inferiority can be
obtained as follows:

- 0.84)2(0.302 + 0.352)
(0.10 + 0.70-0.50)2

As a result, 15 subjects per treatment group are needed in order to have
an 80% power at the 5% level of significance.



9.3. Comparing Inter-Subject Variabilities 231

Remarks

For comparing intra-subject variabilities and/or intra-subject CVs between
treatment groups, replicates from the same subject are essential regardless
of whether the study design is a parallel group design or a crossover de-
sign. In clinical research, data are often log-transformed before the anal-
ysis. It should be noted that the intra-subject standard deviation of log-
transformed data is approximately equal to the intra-subject CV of the
untransformed (raw) data. As a result, it is suggested that intra-subject
variability be used when analyzing log-transformed data, while the intra-
subject CV be considered when the analyzing untransformed data.

9.3 Comparing Inter-Subject Variabilities

In addition to comparing intra-subject variabilities or intra-subject CVs, it
is also of interest to compare inter-subject variabilities. In practice, it is
not uncommon that clinical results may not be reproducible from subject
to subject within the target population or from subjects within the target
population to subjects within a similar but slightly different population due
to the inter-subject variability. How to test a difference in inter-subject and
total variability between two treatments is a challenging problem to clinical
scientists, especially biostatisticians, due to the following factors. First, un-
biased estimators of the inter-subject and total variabilities are usually not
chi-square distributed under both parallel and crossover design with repli-
cates. Second, the estimators for the inter-subject and total variabilities
under different treatments are usually not independent under a crossover
design. As a result, unlike tests for comparing intra-subject variabilities,
the standard F test is not applicable. Tests for comparing inter-subject
variabilities under a parallel design can be performed by using the method
of a modified large sample (MLS) method. See Howe (1974); Graybill and
Wang (1980); Ting et al. (1990); Hyslop et al. (2000). As indicated ear-
lier, the MLS method is superior to many other approximation methods.
Under crossover designs, however, the MLS method cannot be directly ap-
plied since estimators of variance components are not independent. Lee et
al. (2002a) proposed an extension of the MLS method when estimators of
variance components are not independent. In addition, tests for comparing
inter-subject and total variabilities under crossover designs are studied by
Lee et al. (2002b). Note that the MLS method by Hyslop et al. (2000) is
recommended by the FDA (2001) as a statistical test for individual bioe-
qui valence.
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9.3.1 Parallel Design with Replicates

Under model (9.1.1), define

% 3 = 1

where

and .Ty. is given in (9.1.3). Note that E(s2
Bi) — o<2

Bi + &2
Vi/m. Therefore,

A O O -*- A O
aBz = sBi - ~aWi

are unbiased estimators for the inter-subject variances, where a^Vi is defined
in (9.1.2).

Test for Equality

For testing equality in inter-subject variability, the following hypotheses are
usually considered:

&BT -. TT , 1= 1 versus Ha : - 7^ 1.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

HQ : <TBT - ff2
BR = 0 versus Ha : a\T - a2

BR =£ 0.

Let 77 = a2
BT — &2

BR. An intuitive estimator of 77 is given by

O ~ O
f) = <7

= SBT '

A (1 — a)xlOO% confidence interval for ry is given by (fJL,fju), where

TIL = ^ - v^T> %^ = r) + X/S/"

and

/ i \ 2 / i \ 2

A 4 / 1 nT - ! \ , 4 I 1 nfl ~ 1 \L = SBT(I~ xi/2nr^) BR( x2^a/2nR.J
. / \ \ 2 - 4 / / \ \ 2

^H-T / nri'm — 1) \ O W R / nR(m — 1) \i ' > -t I 1 -1 v ' \ i H7 rt I i ^v ' \
T ?T~ I J- n I T ?T~ I J- o I
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/ \ 2 / \ 2
4 A n r - l A . 4 / , n j z -1 \

, w x i~~

We reject the null hypothesis at the a level of significance if 0 ^ (^L,r)t/)-
Under the alternative hypothesis, without loss of generality, we assume that
a2

BR > cr^T and n = HT — nR. Thus, the power of the above test procedure
can be approximated by

where

, 2 - 2

= 2 ' '( 2 \ / 2 \2 , aWT \ i / ^.2 , ^VKfl \
<TST + ̂ T; + v B R ~)

• I

m2(m — 1) m2(m —

As a result, the sample size needed in order to achieve the desired power of
1 — /5 at the a level of significance can be obtained by solving

a/2

This leads to

n =
r2 \2 •

Test for Non-Inferiority/Superiority

Similar to testing intra-subject variabilities, the problem of testing non-
inferiority/superiority can be unified by the following hypotheses:

rj &BT . . . rj & BT ?HQ : - > o versus Ha : - < d.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : a\T — 82a2
BR > 0 versus Ha : a^ — S2a2

BT < 0.

Define
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For a given significance level a, similarly, the (1 — a) x 100%th MLS upper
confidence bound of TJ can be constructed as

where A;/ is given by

A f / —
HT

A.I— a.ri'j- — 1
+ <5VBR

riR-l

Xa,riH-l

We then reject the null hypothesis at the a level of significance if f}u < 0.
Under the assumption that n = UT = n#, using a similar argument to
those in the previous section, the power of the above testing procedure can
be approximated by

where

VBT +
L

^4
aU/'T

m2(m —

2 \ 2
^T\

1m /

. "
1) m2

( 9

cr 2 , ^WH
R D Ti"" m

4 4
aWR

(m-1)

As a result, the sample size needed in order to achieve the power of 1 — (3
at the a level of significance can be obtained by solving

This gives

An Example

For illustration purposes, consider the same example as described in the
previous subsection (i.e., a parallel design with 3 replicates). Suppose we
are interested in testing difference in inter-subject variabilities. In this case,
we assume

VBT = 0-30

aWT = 0.20

aBR = 0.40

aWR = 0.30.
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Hence, the sample size needed in order to achieve an 80% power (I — /3 =
0.80) in establishing non-inferiority with a non-inferiority margin 0.10 (6 =
1.10) at the 5% level of significance (a = 0.05) can be obtained as

= 2
0.202\2 . , / .„„ 0.302

0.302+- ) + 1.14 x (0.402

o

0.204 1.140.304

32(3-l) 32(3-l)

= 0.129.

Hence,
0.129(1.64 + 0.84)'

'(0.302 - l.l2 x 0.402)2

9.3.2 Replicated Crossover Design

Under model (9.1.4), estimators of inter-subject variances can be defined
by

, 2 m
1 X—^ X—^ , _ _ x o

-Xi.T.) ,

where
1 H

— —X i - k - ~~ « 2
3 = 1

Note that .£7(sgfc) = a^fc + a^vkl
im for A; = T,R. Therefore, unbiased

estimators for the inter-subject variance are given by

~ SBT ®WT (9.3.2)

BR (9.3.3)

Test for Equality

For testing the equality in inter-subject variability, the following hypotheses
are considered:

u aBT i v aBT i 1HQ : - = 1 versus Ha : - ^ I.
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Testing the above hypotheses is equivalent to test the following hypotheses:

HQ : cr2
BT - cr2

BR = 0 versus Ha : a2
BT - a2

BR ^ 0.

Let 77 = a2
BT — &2

BR. An intuitive estimator of 77 is given by

A ^ t~\ ^ o

77 = <JBT — <JBR

~ S BT

where a'2BT and o2
BR are given in (9.3.2) and (9.3.3), respectively. Random

vector (xijT.iXijR.)' for the jth subject in ith sequence has a bivariate
normal distribution with covariance matrix given by

(9.3.4)

An unbiased estimator of the covariance matrix f)# is

2
*BT "BTH. ) (9.3.5)

is the sample covariance between XJJT. and XIJR,. Let A j , i — 1,2, be the
two eigenvalues of the matrix OQ^, where

Hence, A t can be estimated by

X = SBT ~ ^^^ ^ V(

Without loss of generality, it can be assumed that AI < 0 < A2- In Lee et
al. (2002b), a (1 — c.v)xlOO% confidence interval of r/ is given by (r /L,r ) t / ) ,
where
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AL = A? 1 -

ra

Us

2
*a/2

f ,

~ 1
1 1

,ns-l/

ns(ra —

\2Av i1

V
0

\ ,

ns - i
2

Xl-a/2,na-l

^ L

I
/

ns(m — 1)

m

Ac/ = A2 1 -
n., - 1

+ A 1-
La/2,ns-l

~4

1 - wfi j , ns(m-
m2 1 " Y2

^l-a/2,ns(m-l) m
1-

and ns = ni + ?i2 — 2. Then, we reject the null hypothesis at the a level of
significance if 0 ^ (TIL, f)u)-

Under the alternative hypothesis, the power of the above test can be
approximated by

'a/2

where

a*2 = 2 ( 2 \ ^ / 2 \ z

_2 i ^Vt/T \ i f ^ . 2 i ^tyfi \ 9n2_,.2 _2
^BT ~> j I Bfi ~^ I ~ 2P aBTaBR

/ \ /

'WT 'WR

m2(m m2(m —

Thus, the sample size needed in order to achieve the power of 1 — /3 at the
a level of significance can be obtained by solving

This leads to

n., =
BR

Test for Non-Inferiority/Superiority

Similar to testing intra-subject variabilities, the problem of testing non-
inferiority/superiority can be unified by the following hypotheses:

rr &BT , j- rrH0 : - > <5 versus Ha : ^ s< o.
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Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

HQ '. &BT ~~ ^ °BR — ̂  versus Ha : ff BT ~ ^ °BR ^ ^-

When 5 < 1, the rejection of the null hypothesis indicates the superiority of
the test drug versus the reference drug. When S > 1, a rejection of the null
hypothesis indicates the non-inferiority of the test drug versus the reference
drug. Let rj — a2

BT — ̂ 2ff2
BR. For a given significance level of a, similarly,

the (1 — a)th upper confidence bound of 77 can be constructed as

T\u = f] + \fK{j,

where At/ is given by

A£/ =
2

y2

/
i

- , „ - ,
ns(m —

' '^ V " Xa/2n -l)

\ 2 4 4 / ns(m - 1)
\ 2

m^ \ vz m* \ vz /
"'' \ ^l-a/2,na(m-l)/ m \ X-a/2,ns(m-1) /

ns = ni + n2 - 2, and

X t = S B T 6SBR± (SBT
2
+6SBR] 46SBTR-

We then reject the null hypothesis at the a level of significance if fjjj < 0.

Using a similar argument to the previous section, the power of the above
test procedure can be approximated by

^a

where

a*2 = 2 ( 2 i WT \ i c4 / 2 i WR

m ) \

4 jc4 4

ra2(ra — 1) m2(m — 1)

yK ' m

As a result, the sample size needed in order to achieve a power of 1 — (3 at
the a level of significance can be obtained by solving

_ V^(ff2BT ~ 5<2(J<BR}
a- ^'

This leads to

T? - A2.T-2
BT ° aBR
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An Example

Suppose a 2 x 4 crossover design (ABAB,BABA) is used to comparing two
treatments (A and B) in terms of their inter-subject variabilities. Infor-
mation from pilot studies indicates that p = 0.75, o2

BT = Q.3,cr^R — 0.4,
a'wT = 0.2, and crl^R = 0.3. The objective is to establish non-inferiority
with a margin of 10% (6 = 1.10). It follows that

/ 02D 2 \ 2 / O c ?0 2 \ 2

(0.30"+ °f-) +L14x(o.4o' + ̂ L)

22 22

= 0.095.

Hence, the sample size needed in order to achieve an 80% power (1 — (3 =
0.80) for establishment of non-inferiority at the 5% level of significance
(a = 0.05) is given by

0.095(1.64 + 0.84)2
f*-\ - \ ' _____ r*^t R K

s~ (0.302 - l.l2 x 0.402)2

Since ns = n\ + ri2 — 2, approximately 29 subjects per sequence are required
for achieving an 80% power at the 5% level of significance.

9.4 Comparing Total Variabilities

In practice, it may also be of interest to compare total variabilities between
drug products. For example, comparing total variability is required in as-
sessing drug prescribability (FDA, 2001). Total variability can be estimated
under a parallel-group design with and without replicates and under various
crossover designs (e.g., a 2 x 2 standard crossover design or a 2 x 2m repli-
cated crossover design). In this section, we focus on sample size calculation
under a parallel-group design with and without replicates, the standard
2 x 2 crossover design, and the 2 x 2m replicated crossover design.

9.4.1 Parallel Designs Without Replicates

For parallel design without replicates, the model in (9.1.1) is reduced to

where x^ is the observation from the jth subject in the iih treatment group.
Also, we assume that the random variable e^ has normal distribution with
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mean 0 and variance a\i for i = T, R. Hence, the total variability can be
estimated by

1

where

1

Test for Equality

For testing equality in total variability, the following hypotheses are con-
sidered:

= &TPI versus Ha

Under the null hypothesis, the test statistic

T = T'T

aTR

is distributed as an F random variable with HT — 1 and n# — 1 degrees of
freedom. Hence, we reject the null hypothesis at the a; level of significance
if

or

Under the alternative hypothesis (without loss of generality, we assume that
< , the power of the above test procedure is

Power = P(T < ^l-a/2,n r-l,nR-l)

= P(l/T > Fa/2,nR-l,nr-l}

= P
TR TT

r

Under the assumption that n = n/j = nr and with a fixed a^T and a\R,
the sample size needed in order to achieve a desired power of 1 — f3 can be
obtained by solving the following equation for n:

aTR
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Test for Non-Inferiority/Superiority

The problem of testing non-inferiority and superiority can be unified by the
following hypotheses:

, x ^ sHQ : - > 6 versus - < 6.

When 6 < 1, the rejection of the null hypothesis indicates the superiority
of test product over the reference in terms of the total variability. When
8 > 1, the rejection of the null hypothesis indicated the non-inferiority of
the test product over the reference. The test statistic is given by

T =

Under the null hypothesis, T is distributed as an F random variable with
TIT and HR degrees of freedom. Hence, we reject the null hypothesis at the
a level of significance if

-* ^ -f'l — a,riT,nR-

Under the alternative hypothesis that (?TT/aTR < <^2' the power of the
above test procedure is

Power = P(T < Fi_a ,n R_i,n T_i)

= P(l / r>F a ) n R_i , n T_i)
" 2 /
aTR/aTR ^ TT
" 2 / 2 X2 2

(Jrprp I (Jrprp 0 O ' rp D

- pIF > —-U—F i ,•* I -1 Tln.nT ^ co 9 (x.nR — i.TiT — J
V ^2(TTfl

Under the assumption that n = HT = ^-fi, the sample size needed in order
to achieve a desired power of 1 — (3 at the a level of significance can be
obtained by solving

®TR -^a,n — l,n—l

Test for Similarity

For testing similarity, the hypotheses of interest are given by

<JTT ., 1 ls u ^ ^ r> o or - < l/o versus Ha : — < - < d,
VTR o &TR

where 6 > 1 is the similarity limit. The above hypotheses can be decom-
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posed into the following two one-sided hypotheses

HQI '• > $ versus Ha\ : < 5,

and

H<)2 • < 7 versus Ha2 : —— > 7.
<JTR o &TR o

These two hypotheses can be tested by the following two test statistics:

n-2 A2/T2
_ <JTT _ ° OTT

J l — c-o - 9 anu -i2 — To •
/I " /T /To ar/j <JTR

We reject the null hypothesis and conclude similarity at the a level of
significance if

j1! <^ p* and T? ^> Ff\ n n

Assuming that n = UT — rip, under the alternative hypothesis that a\T <
O'TRI ^ne Power °f the above test is

/ F a n - i n - i ff2 \
Power = P f a'n '"— < -rpl < J2Fi_Q !n_i,n_i J

= p / :
1,71-1,71-1°

/ (1mm I "

> ( ^ 2 X 2 2 \aTr -, ° ^TT zr )
T2~ > - 2 - ̂ l-a.n-l,?!-! 1
°TR °TR '

= 1 — 2P

Hence, a conservative estimate for the sample size needed in order to achieve
the desired power of 1 — /? can be obtained by solving the following equation
for n:

TR

An Example

Consider the example discussed in the previous subsections. Suppose a
parallel-group design without replicates is to be conducted for comparing
total variabilities between a test drug and a reference drug. It is assumed
that (TTT = 0.55 and <JTR — 0.75. The sample size needed in order to
achieve an 80% power (I — (3 — 0.80) at the 5% level of significance (a =
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0.05) in establishing non-inferiority with the non-inferiority margin 6 = 1.1
can be obtained by solving

0.552 -Fb.20,n-l,n-l

1.102X0.752 Fo.os.n-l.n-l'

This gives n = 40.

9.4.2 Parallel Design with Replicates

In practice, parallel design with replicates can also be used to assess total
variability. The merit of the parallel design with replicates is that it can
serve more than just one purpose. For example, it can not only assess total
variabilities, but also inter-subject and intra-subject variabilities. Model
(9.1.1) can be used to represent data here. Unbiased estimators for total
variabilities are given by

/s 2 2 ^^ ^ 2
aTi ~ sBi ~l ~~ aWii

where s2
Bi is defined in 9.3.1. Let 77 — a\T — a\R\ hence, a natural estimator

for TI is given by
A A 9 yv 977 = aTT — crTR.

Test for Equality

For testing equality in total variability, the following hypotheses are con-
sidered:

versus Ha : ~2 -^ ~2

A (1 — a] x 100% confidence interval of i] is given by (T\LI flu], where

f)L = fl- X/AL, TJU = fj+ \XAt/,

AAL =
Y2

/ \ 2

(m — 1} OWT I riT(m — 1) \
^ 2 * 2

m \ Xi_a/2,nT(m-l) /

\2 ~ 4 / / \ \ 2
I 7T1 — 1 ) /T -̂  / T7 r> I 7T7 — 1 1 \\l IL J. / (y li^ F? I ' ̂  jl \ /' c- -L / I

~l 2 1 ^ 2 I '
771 V Xa/2,nR(m-l)/
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and

/ \ 2

1 TlT-1 \ ,1 - - +

.
m"A \ Xa/2,nT(rn-l) /

(m - 1)2<7^ A _ nfl(m - 1) \

We reject the null hypothesis at the a level of significance if 0 0 (TJL, fju).
Under the alternative hypothesis and assume that n = HT = riR, the power
of the above test procedure can be approximated by

where
2

 r2 x 2

a*2 =2 -- -)—^ ] + ( (TRR H— -̂̂ - 1
m

. (rn-iWvT , (^-
H o r •

m

As a result, the sample size needed in order to achieve 1 — /3 power at the
a level of significance can be obtained by solving

This gives

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority/superiority can be unified by the
following hypotheses:

<JTT , , „ ^ x> o versus Ha : - < o.

Testing the above hypotheses is equivalent to testing the following hypothe-

^2<JTR — 0 versus Ha : d^T — S2cr^R < 0.
ses:
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When 8 < 1, the rejection of the null hypothesis indicates the superiority
of the test drug versus the reference drug. When 6 > 1, the rejection of
the null hypothesis indicates the non-inferiority of the test drug versus the
reference drug. Let 77 = cr^r ~ $2(rTR- For a given significance level of a,
the (1 — o;)th upper confidence bound of rj can be constructed as

flu = ?? + \/At/

where 17 = a\T — S2a?rR and At/ is given by

We then reject the null hypothesis at the a level of significance if f]u < 0.
Using a similar argument to the previous section, the power of the above
testing procedure can be approximated by

where

o I / ^.2 , UWT \ , r4= 2 | | OBT -\ | + 0
a2

WT\
777, / \ 777-

(m - l)o-^T 4 (m -
m^ TTi-2

As a result, the sample size needed in order to achieve the desired power of
1 — j3 at the a level of significance can be obtained by solving

This gives



246 Chapter 9. Comparing Variabilities

An Example

Consider the same example discussed in the previous subsection. Suppose
a trial with a parallel design with 3 replicates (m = 3) is conducted to
compare total variabilities between treatment groups. It is assumed that
OBT — 0.30, VBR — 0.40, <JWT — 0.20, and OWR = 0.30. The objective is
to establish the non-inferiority with 6 = 1.1. It follows that

a*2 = 2 0.302 +

(3 - 1)0.2Q4
 4(3- 1)0.34

P + 3^

As a result, the sample size needed per treatment group in order to achieve
an 80% (!-/? = 0.80) power at the 5% (a = 0.05) level of significance is
given by

0.133(1.64 + 0.84)2
' ________________ . .. _______ r~^ *rr-\ -~~

(0.302 + 0.202 - 1.12(0.42 + 0.32))2

9.4.3 The Standard 2 x 2 Crossover Design

Under the standard 2 x 2 crossover design, model (9.1.4) is still useful. We
omitted the subscript / since there are no replicates.

Intuitive estimators for the total variabilities are given by

<TTT —

+ "2-2 . = 1 , = ]

and

where

n . / -^ -^ /v-

z

Test for Equality

For testing the equality in total variability, again consider the following
hypotheses:

2 2

HO '• ~ip~ — 1 versus Ha : ^T ^ 1.
TR TR



9.4. Comparing Total Variabilities 247

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

HQ : o\T — a^R = 0 versus Ha : a\T — a\R ^ 0.

Let r\ = a\T — o\R. An intuitive estimator of r\ is given by
^ ^ f\ ^ Q

77 = aTT - aTR.

Let
, 2 m

ijT - XLT}(xijR - Xi.R).

Define A ^ , z = 1,2, by

C CTrprr, (J- TR V(aTT + aTR> ^° BTR

Assume that AI < 0 < A2- In Lee et al. (2002b), a (1 — a)xlOO% confidence
interval of r? is given by (TIL , fju ) > where

)
2 /

?9 / ni + 77,2 — 2
+ *2 I 1 - -2

\ <*a/2,ni+n2-2

n i + n 2 - 2 \ -2 [ t n i + n 2 - 2
1 - ~2 + A2 \ L ~ -9

We reject the null hypothesis at the a level of significance if 0 ^ (fJLi'iju)-

Under the alternative hypothesis, without loss of generality, we assume
aTR •> aTT- Let ns = n\ + 71,2 — 2. The power of the above test can be
approximated by

( / ( 2 _ 2
- S TT °Tl

a*

where
a* = 2(<JTT + aTR - 1p crBT(TBR).

Hence, the sample size needed in order to achieve the power of 1—(3 power at
the a level of significance can be obtained by solving the following equation:

which implies that

2 — r2 }TR)— rr"



248 Chapter 9. Comparing Variabilities

Test for Non-Inferiority/Superiority

The problem of testing non-inferiority/superiority can be unified by the
following hypotheses:

, , TT °~TT ^ ?HQ : - > d versus Ha : - < o.

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

HQ : <J\T - S2cr2^R > 0 versus Ha : a\T — 82&TR < 0-

When 6 < 1, the rejection of the null hypothesis indicates the superiority
of the test drug versus the reference drug. When 6 > 1, the rejection of
the null hypothesis indicates the non-inferiority of the test drug versus the
reference drug. Let r/ = a?pT — 52cr^/j- For a given significance level of a,
similarly, the (1 — a)th upper confidence bound of r? can be constructed as

fj[j —ri+ \/A{y

where A u is given by

/ \ 2 / \ 2

A = x i 2 ( r c i + n 2 - 2 A | p ( ^1 + n2 - 2 \
2

Al — a.ni+n^— 2

and \i, i — 1,2, are given by

We reject the null hypothesis at the a level of significance if fju < 0. Under
the alternative hypothesis, the power of the above test procedure can be
approximated by

/ Jn(a2 - S2cr2

$ (za - TT ^ X1

\ a*

where

Hence, the sample size needed in order to achieve 1 — j3 power at a level of
significance can be obtained by solving

This gives
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An Example

Consider the same example discussed in the previous subsection. Under
the standard 2 x 2 crossover design, it is assumed that p = 1, VBT — 0.30,
OBR = 0.40, OWT = 0.20, and OWR — 0.30. The objective is to establish
non-inferiority with a margin 8 = 1.1. It follows that

a*2 = 2[(0.302 + 0.202)2 + 1.14(0.42 + 0.32)2

-2 x l.l2 x 0.302 x 0.42] = 0.147.

As a result, the sample size needed in order to achieve an 80% (1 — j3 =
0.80) power at the 5% (a — 0.05) level of significance is given by

(0.153)(1.64+ 0.84)2

ol.s ~ (0.302 + 0.202 - l.l2 x (0.42 + 0.32))2

Since ns — n\ + n? — 2, approximately 17 subjects should be assigned to
each sequence to achieve an 80% (! — /? = 0.80) power.

9.4.4 Replicated 2 x 2m Crossover Design

We can use similar argument for test of inter-subject variabilities under
model 9.1.4 with the estimators

-«
.2.2 2 I ~ 2 7, rri T)aTk — sBk + aWk-> K — J.,tt.

Test for Equality

For testing the equality in total variability, consider the following hypothe-
ses:

2 _2

#0 : ^T — 1 versus Ha : ^T ^ 1.
T R T Ra

Testing the above hypotheses is equivalent to testing the following hypothe-
ses:

H0 : a\T — a\R = 0 versus Ha : a\T — a\R ^ 0.

Let T] — OTT ~~ &TR- ^n Lee et al. (2002b), a (1 — a)xlOO% confidence
interval of r/ is given by ( f /L> %/)> where
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1 - — 1

l-a/2,ns-l

-V?*WR ( l
n s m

2 I " ,,2

\ 2

At; = \i\ 1 - -i

\ ^Q,

(rn — 1)2(

— 1

777-"

(ra

^h-rr

n s (m-l )

na(m- 1)

and Ai's are the same as those used for the test of equality for inter-subject
variabilities. We reject the null hypothesis at the a level of significance if
0 0 (flL,flu}-

Under the alternative hypothesis, without loss of generality, we assume
n — UT — TiR. The power of the above test can be

/—( 2 2
~yTL\(Jrprp ^Tl

TR
approximated by

where

a*2 = 2 °
WT
-

(m -

Hence, the sample size needed in order to achieve the power of 1 — j3 at the
a level of significance can be obtained by solving the following equation:

This leads to

n I 2
\aTT ~

2 \2
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Test for Non-Inferiority/Superiority

The problem of testing non-inferiority/superiority can be unified by the
following hypotheses:

TT . r TT rHQ : - > o versus Ha : - < d,
&TR

which is equivalent to

TT 2 r2 2 ^ n nr 2 r2 2 ^ nJIQ : &TT — o crj'/j ^ U versus /7a : <TJ^ — o &TR < u.

When ^ < 1, the rejection of the null hypothesis indicates the superiority
of the test drug versus the reference drug. When 6 > 1, the rejection of
the null hypothesis indicates the non-inferiority of the test drug versus the
reference drug. Let fj = a?pT — ̂ 2<r2"^. For a given significance level of en,
similarly, the (1 — a)th upper confidence bound of r\ can be constructed as

% = ») +

where fi = a^ —

and Aj's are same as those used for the test of non-inferiority for inter-
subject variabilities. We then reject the null hypothesis at the a level of
significance if fiu < 0. Using a similar argument to the previous section,
the power of the above testing procedure can be approximated by

where

v*2 = 2
2 \ 2 / 2 \ 2

"2 \
aWT \~2 WT , r4 / 2 . wfl 2 2 2-- ~

(m — I)<TVKT
H ^ 1-
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Hence, the sample size needed in order to achieve the power of 1 — (3 at the
a level of significance can be obtained by solving the following equation:

/O0-2 _ fi2ff2 \
za/2 I — Z/3-I ff*

This leads to

TR>

An Example

Suppose a 2 x 4 crossover design (ABAB,BABA) is used to compare two
treatments (A and B) in terms of their total variabilities. Information from
pilot studies indicates that p = 0.75, a\T — Q.3,(J2

BR = 0.4, dwT = 0.2,
and &WR — 0.3. The objective is to establish non-inferiority with a margin
8 = 1.1. It follows that

-21.12 x (0.75 x 0.3 x 0.4)

0.204 l.l4 x 0.304

+
22 22

= 0.106.

Hence, the sample size needed in order to achieve an 80% power (I — j3 =
0.80) at the 5% level of significance (a — 0.05) is given by

(Q.106)(1.64 + 0.84)2

s (0.32 + 0.22-1.12 x (0.42 + 0.32))2 ~ '

Since ns = n\ -fri2 — 2, approximately 12 subjects per sequence are required
for achieving an 80% power at the 5% level of significance.

9.5 Practical Issues

In recent years, the assessment of reproducibility in terms of intra-subject
variability or intra-subject CV in clinical research has received much at-
tention. Shao and Chow (2002) defined reproducibility of a study drug
as a collective terms that encompasses consistency, similarity, and stabil-
ity (control) within therapeutic index (or window) of a subject's clinical
status (e.g., clinical response of some primary study endpoint, blood lev-
els, or blood concentration-time curve) when the study drug is repeatedly
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administered at different dosing periods under the same experimental con-
ditions. Reproducibility of clinical results observed from a clinical study
can be quantitated through the evaluation of the so-called reproducibility
probability, which will be briefly introduced in Chapter 12 (see also Shao
and Chow, 2002).

For assessment of inter-subject variability and/or total variability, Chow
and Tse (1991) indicated that the usual analysis of variance models could
lead to negative estimates of the variance components, especially the inter-
subject variance component. In addition, the sum of the best estimates of
the intra-subject variance and the inter-subject variance may not lead to
the best estimate for the total variance. Chow and Shao (1988) proposed
an estimation procedure for variance components which will not only avoid
negative estimates but also provide a better estimate as compare to the
maximum likelihood estimates. For estimation of total variance, Chow and
Tse (1991) proposed a method as an alternative to the sum of estimates of
individual variance components. These ideas could be applied to provide a
better estimate of sample sizes for studies comparing variabilities between
treatment groups.





Chapter 10

Bioequivalence Testing

When a brand-name drug is going off-patent, generic drug companies may
file abbreviated new drug applications for generic drug approval. An ap-
proved generic drug can be used as a substitute for the brand-name drug.
In 1984, the FDA was authorized to approve generic drugs through bioavail-
ability and bioequivalence studies under the Drug Price and Patent Term
Restoration Act. Bioequivalence testing is usually considered as a surrogate
for clinical evaluation of drug products based on the Fundamental Bioequiv-
alence Assumption that when two formulations of the reference product
(e.g., a brand-name drug) and and the test product (a generic copy) are
equivalent in bioavailability, they will reach the same therapeutic effect.
In vivo bioequivalence testing is commonly conducted with a crossover de-
sign on healthy volunteers to assess bioavailability through pharmacokinetic
(PK) responses such as area under the blood or plasma concentration-time
curve (AUC) and maximum concentration (Cmax). . For some locally act-
ing drug products such as nasal aerosols (e.g., metered-dose inhalers) and
nasal sprays (e.g., metered-dose spray pumps) that are not intended to be
absorbed into the bloodstream, bioavailability may be assessed by measure-
ments intended to reflect the rate and extent to which the active ingredient
or active moiety becomes available at the site of action. Bioequivalence
related to these products is called in vitro bioequivalence and is usually
studied under a parallel design. Statistical procedures for some types of
bioequivalence studies are described in the FDA guidances (FDA, 2000,
2001). Chow and Shao (2002) provided a review of statistical procedures
for bioequivalence studies that are not provided by the FDA.

In Section 10.1, we introduce various bioequivalence criteria. Section
10.2 introduces sample size calculation for the average bioequivalence. Sam-
ple size formulas for population bioequivalence and individual bioequiva-
lence are provided in Sections 10.3 and 10.4, respectively. Section 10.5

255
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focuses on sample size calculation for in vitro bioequivalence.

10.1 Bioequivalence Criteria

In 1992, the FDA published its first guidance on statistical procedures for in
vivo bioequivalence studies (FDA, 1992). The 1992 FDA guidance requires
that the evidence of bioequivalence in average bioavailability in

PK responses between the two drug products be provided. Let yR and
yT denote PK responses (or log-PK responses if appropriate) of the refer-
ence and test formulations, respectively, and let 5 = E(yT) — E(yR). Under
the 1992 FDA guidance, two formulations are said to be bioequivalent if 6
falls in the interval (6^, 6u) with 95% assurance, where SL and 6u are given
limits specified in the FDA guidance. Since only the averages E(yT] and
E(yR] are concerned in this method, this type of bioequivalence is usually
referred to as average bioequivalence (ABE). In 2000, the FDA issued a guid-
ance on general considerations of bioavailability and bioequivalence studies
for orally administered drug products, which replaces the 1992 FDA guid-
ance (FDA, 2000). Statistical design and analysis for assessment of ABE
as described in the 2000 FDA guidance are the same as those given in the
1992 FDA guidance.

The ABE approach for bioequivalence, however, has limitations for ad-
dressing drug interchangeability, since it focuses only on the comparison
of population averages between the test and reference formulations (Chen,
1997a). Drug interchangeability can be classified as either drug prescriba-
bility or drug switchability. Drug prescribability is referred to as the physi-
cian's choice for prescribing an appropriate drug for his/her new patients
among the drug products available, while drug switchability is related to
the switch from a drug product to an alternative drug product within the
same patient whose concentration of the drug product has been titrated
to a steady, efficacious, and safe level. To assess drug prescribability and
switchability, population bioequivalence (PBE) and individual bioequiva-
lence (IBE) are proposed, respectively (see Anderson and Hauck, 1990;
Esinhart and Chinchilli, 1994; Sheiner, 1992; Schall and Luus, 1993; Chow
and Liu, 1995; and Chen, 1997a). The concepts of PBE and IBE are de-
scribed in the 1999 FDA draft guidance (FDA, 1999a) and the 2001 FDA
guidance for industry (FDA. 2001). Let yT be the PK response from the
test formulation, yR and y'R be two identically distributed PK responses
from the reference formulation, and

PY "\2 EV / ~\
•Z'dJR ~~~ UT) ~~ ^(UR ~ HR)

where <JQ is a given constant specified in the 2001 FDA guidance. If yR,
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y'R and yT are independent observations from different subjects, then the
two formulations are PBE when 0 < Op BE, where Op BE is an equivalence
limit for assessment of PBE as specified in the 2001 FDA guidance. If yR,
y'R and yT are from the same subject (E(yR — y'R)2/2 is then the within-
subject variance), then the two formulations are IBE when 0 < OIBE, where
OIBE is an equivalence limit for IBE as specified in the 2001 FDA guidance.
Note that 0 in (10.1.1) is a measure of the relative difference between the
mean squared errors of yR — yT and yR — y'R. When yR, y'R and yT are
from the same individual, it measures the drug switchability within the
same individual. On the other hand, it measures drug prescribability when
yR, y'R, and yT are from different subjects. Thus, IBE addresses drug
switchability, whereas PBE addresses drug prescribability. According to the
2001 FDA guidance, IBE or PBE can be claimed if a 95% upper confidence
bound for 9 is smaller than OIBE or Op BE, provided that the observed ratio
of geometric means is within the limits of 80% and 125%.

For locally acting drug products such as nasal aerosols (e.g., metered-
dose inhalers) and nasal sprays (e.g., metered-dose spray pumps) that are
not intended to be absorbed into the bloodstream, the FDA indicates that
bioequivalence may be assessed, with suitable justification, by in vitro bioe-
quivalence studies alone (21 CFR 320.24). In the 1999 FDA guidance, in
vitro bioequivalence can be established through six in vitro bioequivalence
tests, which are for dose or spray content uniformity through container life,
droplet or particle size distribution, spray pattern, plume geometry, prim-
ing and repriming, and tail off distribution. The FDA classifies statistical
methods for assessment of the six in vitro bioequivalence tests for nasal
aerosols and sprays as either the nonprofile analysis or the profile analysis.
For the nonprofile analysis, the FDA adopts the criterion and limit of the
PBE. For the profile analysis, bioequivalence may be assessed by compar-
ing the profile variation between test product and reference product bottles
with the profile variation between reference product bottles.

10.2 Average Bioequivalence

It should be noted that testing ABE is a special case of testing equivalence.
As a result, the formulas derived in Chapter 3 for testing equivalence un-
der various designs are still valid for testing ABE. In practice, the most
commonly used design for ABE is a standard two-sequence and two-period
crossover design. Hence, for the sake of convenience, the sample size for-
mula for ABE under such a design is presented here. Details regarding
more general designs can be found in Chapter 3.

For the ABE, a standard two-sequence, two-period (2 x 2) crossover de-
sign is recommended by the FDA guidances. In a standard 2 x 2 crossover
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design, subjects are randomly assigned to one of the two sequences of for-
mulations. In the first sequence, ni subjects receive treatments in the order
of TR (T — test formulation, R — reference formulation) at two different
dosing periods, whereas in the second sequence, n^ subjects receive treat-
ments in the order of RT at two different dosing periods. A sufficient length
of washout between dosing periods is usually applied to wear off the possi-
ble residual effect that may be carried over from one dosing period to the
next dosing period. Let y^k be the original or the log-transformation of
the PK response of interest from the zth subject in the kth sequence at the
jth dosing period. The following statistical model is considered:

Qk + SiM + eljk, (10.2.1)

where p is the overall mean; Pj is the fixed effect of the jth period (j = 1, 2,
and PI + PZ = 0); Qk is the fixed effect of the kth sequence (k = 1,2, and
Q\ + Qz = 0); F/ is the fixed effect of the Zth formulation (when j = A;,
/ = T; when j ^ k, I = R', FT + FR = 0); ,%&/ is the random effect of
the ith subject in the kth sequence under formulation / and (SikT,SikR),
i — 1, . . . ,n fc , k = 1, 2, are independent and identically distributed bivariate
normal random vectors with mean 0 and an unknown covariance matrix

aBT PaBTaBR

PaBTaBR aBR

ejj^'s are independent random errors distributed as Ar(0,0"jyj); and S^fc/'s
and cafe's are mutually independent. Note that a\T and CT%R are between-
subject variances and o"^/T and cr^yR are within-subject variances, and that
cr^T = <J2

BT
Jr(7^T and d^R = ̂ R+^WR are ^ne total variances for the test

and reference formulations, respectively. Under model (10.2.1), the ABE
parameter 6 defined in Section 10.1 is equal to 5 = FT — FR. According
to the 2000 FDA guidance, ABE is claimed if the following null hypothesis
HQ is rejected at the 5% level of significance:

HQ-.5<8L or 6 > 6u versus HI : 5L < 8 < 6V, (10.2.2)

where SL and 6jj are given bioequi valence limits. Under model (10.2.1),

2 /11-2 /12-3 /21+2 /22 . AT i s -1,1 / - , - i i (1023)

where y^ is the sample mean of the observations in the A;th sequence at
the jth period and a\a is

al.b = *2D + a^wT + b°WR (10.2.4)
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with a = 1 and 6=1. Let

2

^1,1 = —T—iTo 5H 5Z (yilk ~ yi2k ~ yik + ^2fc) • (10.2.5)

Then a\ x is independent of <5 and

where x2, i§ tne chi-square distribution with r degrees of freedom. Thus,
the limits of a 90% confidence interval for S are given by

r r ,o± = o ± to.05,m+n2-2— r-\/ -- 1 -- )

where £o.05,r is the upper 5th quantile of the t-distribution with r de-
grees of freedom. According to the 2000 FDA guidance, ABE can be
claimed if and only if the 90% confidence interval falls within (—8L,8u)i
i.e., SL < <5_ < 5+ < Su- Note that this is based on the two one-sided
tests procedure proposed by Schuirmann (1987). The idea of Schuirmann's
two one-sided tests is to decompose HQ in (10.2.2) into the following two
one-sided hypotheses:

HQI '• ^ < SL and #02 ' 8 > &u-

Apparently, both HQI and #02 are rejected at the 5% significance level if
and only if SL < 5- < 8+ <$u- Schuirmann's two one-sided tests procedure
is a test of size 5% (Berger and Hsu, 1996, Theorem 2).

Assume without loss of generality that n\ — n^ = n. Under the alter-
native hypothesis that |e| < <5, the power of the above test is approximately

, ,
2$ -- *Q,2n-2 - 1-

V ff^ J
As a result, the sample size needed for achieving a power of 1 — /3 can be
obtained by solving

2n(J-|6|)
a,2n-2 — C/3/2,2n-2-

This leads to

n > a '2n~2 /3/f^~2) (Tl'1. (10.2.6)
2(8 - |e|)2

Since the above equations do not have an explicit solution, for convenience,
for 2 x 2 crossover design, the total sample size needed to achieve a power
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Table 10.2.1: Sample Size for Assessment of Equivalence
Under a 2 x 2 Crossover Design (m = 1)

Power - 80%

e

<TI,I =0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

=
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

0%
3
3
3
4
4
5
6
6
7
8
9
10
11
13
14
15

5%
3
4
4
5
6
7
8
10
11
13
14
16
18
20
22
24

10%
4
6
7
9
11
13
15
18
20
24
27
30
34
38
42
47

15%
9
13
17
22
27
33
40
48
56
64
74
84
94
105
117
130

0%
3
3
4
4
5
6
7
8
9
10
11
13
14
16
17
19

Power=90
5%
4
4
5
6
7
9
10
12
14
16
18
20
22
25
28
30

10%
5
7
9
11
13
16
19
22
26
29
34
38
43
48
53
59

15%
12
16
21
27
34
42
51
60
70
81
93
105
119
133
148
164

Note: (1) the bioequivalence limit 6 is 22.3%; (2) sample size calculation
was performed based on log-transformed data.

of 80% or 90% at 5% level of significance with various combinations of e
and 8 is given in Table 10.2.1.

When sample size is sufficiently large, equation (10.2.6) can be further
simplified into

2(<5-H) 2 '

An Example

Suppose an investigator is interested in conducting a clinical trial with 2 x 2
crossover design to establish ABE between an inhaled formulation of a drug
product (test) and a subcutaneous (SC) injected formulation (reference) in
terms of log-transformed AUG. Based on PK data obtained from pilot stud-
ies, the mean difference of AUC can be assumed to be 5% (8 = 0.05). Also
it is assumed the standard deviation for intra-subject comparison is 0.40.
By referring to Table 10.2.1, a total of 24 subjects per sequence is needed
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in order to achieve an 80% power at the 5% level of significance. On the
other side, if we use normal approximation, the sample size needed can be
obtained as

(20.05 +
2(6 -|e|)

(1.96 + 0.84)2 xO.40
2(0.223 - 0.05)2 '

10.3 Population Bioequivalence

PBE can be assessed under the 2 x 2 crossover design described in Section
10.2. Under model (10.2.1), the parameter 0 in (10.1.1) for PBE is equal
to

s2o crTT -
— — n n q n- (10.3.1)

In view of (10.3.1), PBE can be claimed if the null hypothesis in

HQ : A > 0 versus HI : A < 0

is rejected at the 5% significance level provided that the observed ratio of
geometric means is within the limits of 80% and 125%, where

A = 6 + crTT — crTR — 9 PBE max{<70 , crTfi}

and 9 PBE is a constant specified in FDA (2001).

Under model (10.2.1), an unbiased estimator of 6 is 5 given in (10.2.3).
Commonly used unbiased estimators of cr^T and &J>R are respectively

1

/_-/

and

/•* *?

^Tfl = - 2

HI + n-2 — 2

Applying linearization to the moment estimator

A = <r + <r - a- - 9
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Chow, Shao, and Wang (2002b) obtained the following approximate 95%
upper confidence bound for A. When a\R > <JQ,

At/ = <52 + 4T - (1 + OPBE}VTR + to.os,ni+nz-2^V, (10.3.2)

where V is an estimated variance of <52 + a\T — (1 + QPBE]^J,R of the form

V = (25, 1, -(1 + ePBE]) C (25, 1, -(1 +

and C is an estimated variance-covariance matrix of (<5, OJ>T, &TR)- Since 8
and (&TTI&TR) are independent,

(0,0) \
V ' ' I

(ni-l)Ci , (n2-l)C2 I '
(m+n2-2)2 + (m+n2-2)2 J

where a\ A is defined by (10.2.5), C\ is the sample covariance matrix of
((ym - 'da)2, (Viii - y 2 i } 2 } , i = l,...,ni, and C^ is the sample covariance
matrix of ( ( y l 2 2 - ^22)2, (yu2 - '^12)2), i = 1, ...,n2.

When a2-^ < a2,, the upper confidence bound for A should be modified
to

A(/ = 6 + aTT — crTR — OPBE^Q 4- ^o.o5,rn+n2-2\/^ /05 (10.3.3)

where

The confidence bound A;/ in (10.3.2) is referred to as the confidence
bound under the reference-scaled criterion, whereas A{/ in (10.3.3) is re-
ferred to as the confidence bound under the constant-scaled criterion. In
practice, whether a\R > a2, is usually unknown. Hyslop, Hsuan, and Holder
(2000) recommend using the reference-scaled criterion or the constant-
scaled criterion according to a^R > a2, or a^R < a2,, which is referred
to as the estimation method. Alternatively, we may test the hypothesis of
&TR — ao versus a^R < ao ^° decide which confidence bound should be
used; i.e., if a^R(m +n 2 -2) > cro^o.95,n1+n2-2' tnen ^u m (10.3.2) should
be used; otherwise A[/ in (10.3.3) should be used, where x^ r denotes the
ath upper quantile of the chi-square distribution with r degrees of freedom.
This is referred to as the test method and is more conservative than the
estimation method.

Based on an asymptotic analysis, Chow, Shao, and Wang (2002b) de-
rived the following formula for sample size determination assuming that
n\ = ri2 = n:

n > C("°-05+2/3)2, (10.3.4)
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where

6, <T? i , &TT, v^rtf, 0"RT5 CTRR and p are given initial values, Zt is the upper" 1,1' J. J. ~ 1 ri" D J. ~ D ri f o i t , £-£-

£th quantile of the standard normal distribution, 1 — (3 is the desired power,
a = Op BE if °"Tfl — ao and o = 0 if 0Y# < CTO.

Sample sizes n selected using (10.3.4) with 1 — (3 = 80% and the power
Pn of the PBE test based on 10,000 simulations (assuming that the initial
parameter values are the true parameter values) are listed in Table 10.3.1.
It can be seen from Table 10.3.1 that the actual power Pn corresponding to
each selected n is larger than the target value of 80%, although the sample
size obtained by formula (10.3.4) is conservative since Pn is much larger
than 80% in some cases.

An Example

Suppose an investigator is interested in conducting a clinical trial with 2 x 2
crossover design to establish PBE between an inhaled formulation of a drug
product (test) and a subcutaneous (SC) injected formulation (reference) in
terms of log-transformed AUG. Based on PK data obtained from pilot stud-
ies, the mean difference of AUC can be assumed to be 5% (6 = 0.00). Also
it is assumed that the inter-subject variability under the test and the refer-
ence are given by 0.40 and 0.40, respectively. The inter-subject correlation
coefficient (p) is assumed to be 0.75. It is further assumed that the intra-
subject variability under the test and the reference are given by 0.10 and
0.10, respectively. The sample size needed in order to achieve an 80% power
at the 5% level of significance is given by 12 subjects per sequence according
to Table 10.3.1.

10.4 Individual Bioequivalence

For the IBE, the standard 2 x 2 crossover design is not useful because each
subject only receives each formulation once and, hence, it is not possible to
obtain unbiased estimators of within-subject variances. To obtain unbiased
estimators of the within-subject variances, FDA (2001) suggested that the
following 2 x 4 crossover design be used. In the first sequence, n\ subjects
receive treatments at four periods in the order of TRTR (or TRRT), while
in the second sequence, n^ subjects receive treatments at four periods in
the order of RTRT (or RTTR). Let y^ be the observed response (or log-
response) of the ith subject in the kth sequence at jth period, where i =
1,..., rife, j = 1,..., 4, k = 1,2. The following statistical model is assumed:

yijk = n + Fi + Wijk + Sikl + eijk, (10.4.1)
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Table 10.3.1: Sample Size n Selected Using (10.3.4) with 1 - /? = 80%
and the Power Pn of the PBE Test Based on 10,000 Simulations

far TBR
.1 .1

.1 .4

.1 .1

.1 .4

.1 .4

.1 .4

.4 .4

.4 .4

.4 .4

.4 .4

.4 .6

.4 .6

.6 .4

.6 .4

.6 .6

.6 .6

Parameter

.1 .4 .4726
.4227
.2989
.0000

.1 .1 .4726
.3660
.2113

.4 .4 .2983
.1722
.0000

.4 .4 .5323
.4610
.2661
.0000

.6 .4 .3189
.2255
.0000

.6 .6 .6503
.4598
.3252
.0000

.1 .1 .3445
.2436
.1722
.0000

.1 .4 .5915
.4610
.2661
.0000

.6 .4 .0000

.6 .6 .5217
.3012
.0000

.4 .4 .6655
.5764
.3328
.0000

.4 .6 .9100
.7049
.4070
.0000

.1 .4 .3905
.3189
.2255
.0000

.4 .4 .0000

.1 .4 .7271
.5632
.3252
.0000

.4 .4 .6024
.3012
.0000

A
-.2233
-.2679
-.3573
-.4466
.̂2233
-.3127
-.4020
-.2076
-.2670
-.2966
-.4250
-.4958
-.6375
-.7083
-.4066
-.4575
-.5083
-.6344
-.8459
-.9515
-1.057
-.1779
-.2373
-.2670
-.2966
-.3542
-.4958
-.6375
-.7083
-.3583
-.6351
-.8166
-.9073
-.6644
-.7751
-.9965
-1.107
-.8282
-1.159
-1.491
-1.656
-.3558
-.4066
-.4575
-.3583
-.3583
-.5286
-.7401
-.9515
-1.057
-.5444
-.8166
-.9073

P
n
37
24
12
7
34
16
9
44
23
17
36
25
13
10
39
29
22
44
22
16
12
37
20
15
12
44
21
12
9
46
41
22
17
33
23
13
10
45
21
11
9
41
30
23
17
42
47
23
13
10
47
19
14

= .75

Pn

.8447

.8448

.8959

.9863

.8492

.8985

.9560

.8123

.8381

.8502

.8305

.8462

.8826

.9318

.8253

.8358

.8484

.8186

.8424

.8615

.8965

.8447

.8801

.8951

.9252

.8354

.8740

.9329

.9622

.8171

.8246

.8437

.8711

.8374

.8499

.9062

.9393

.8403

.8684

.9081

.9608

.8334

.8413

.8584

.8661

.8297

.8335

.8785

.9221

.9476

.8246

.8804

.8903

P
n
36
24
12
7
32
15
8
43
23
17
35
24
13
10
38
28
22
44
22
16
12
22
12
9
7
38
18
11
9
43
39
21
16
30
21
12
9
42
20
11
8
32
24
18
14
35
36
18
10
8
38
15
12

-j

Pn

.8337

.8567

.9035

.9868

.8560

.8970

.9494

.8069

.8337

.8531

.8290

.8418

.8872

.9413

.8131

.8273

.8562

.8212

.8500

.8689

.9000

.8983

.9461

.9609

.9853

.8481

.8851

.9306

.9698

.8213

.8252

.8509

.8755

.8570

.8709

.9258

.9488

.8447

.8874

.9295

.9577

.8494

.8649

.8822

.9009

.8403

.8584

.9046

.9474

.9780

.8455

.8879

.9147
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where /u is the overall mean; FI is the fixed effect of the /th formulation (/ =
T, R and FT + FR = 0); VF/jfc's are fixed period, sequence, and interaction
effects (]Tfc W^ = 0, where Wik is the average of Wife's with fixed ( / ,&) ,
/ = T, jR); and Siki's and e^'s are similarly defined as those in (10.2.1).
Under model (10.4.1), 6 in (10.1.1) for IBE is equal to

62 + aD T aWT ~ aWR

where dp = cr^T + a\R — ̂ P^BT^BR '1S tne variance of S^T — •%&#, which
is referred to as the variance due to the subject-by-formulation interaction.
Then, IBE is claimed if the null hypothesis H0 : 9 > QIBE is rejected at
the 5% level of significance provided that the observed ratio of geometric
means is within the limits of 80% and 125%, where QIBE is the IBE limit
specified in the 2001 FDA guidance. From (10.4.2), we need a 5% level test
for

HO '. 7 > 0 versus HI : 7 < 0,

where

7 = S2 + VD 4- VWT ~ °WR ~ GIBE maxjap, VWR}-

Therefore, it suffices to find a 95% upper confidence bound 7^7 for 7. IBE
is concluded if 7^7 < 0.

The confidence bound 7(7 recommended in FDA (2001) is proposed by
Hyslop, Hsuan, and Holder (2000), which can be described as follows. For
subject i in sequence fc, let xnk and zuk be the average and the difference,
respectively, of two observations from formulation /, and let xik and zik
be respectively the sample mean based on xn^s and zuk's- Under model
(10.4.1), an unbiased estimator of 6 is

? XTI - XRI + XTZ - XRZ ( ^0.5,0.5
d — ~ N d, —-—

2 \ 4

an unbiased estimator of o"o.5)0.5 is

u-5'u'5 m + n 2 - 2 m + n 2 - 2 '

where s^fc is the sample variance based on XiTk — XiRk, i = l 5 - - - 5 ^ f c ; an
unbiased estimator of &WT 1S

°WT = 2(m -f n2 - 2) ~ m + n 2 - 2 '



266 Chapter 10. Bioequivalence Testing

where s^k is the sample variance based on
ased estimator of o^R is

-, «' = 1, ---^fc; and an unbi-

2(m + n2 ~ 2) — 2

where 4fc is the sample variance based on ZiRk, i = 1,..., 77fc. Furthermore,
estimators <5, a2, 5 0 5, <J^T and cr^R are independent. When 0"2y# > <JQ,
an approximate 95% upper confidence bound for 7 is

7t/ = <52 + ff0.5,0.5 + 0.5<j?VT - (1.5 + 0IBE)°wR +

where L7^ is the sum of the following four quantities:

2

-4
"0.5,0.5

2

+ 7

— + — -6

— 2
- 1

(10.4.3)

and

I Hi + 772 ~ 2
VT I ~2

\ A0.95.m+n2-2

- 2
. (10.4.4)

\X6.05,rn+n2-2 /

When &Q > a"wR, an approximate 95% upper confidence bound for 7 is

~ + VUo, (10.4.5)

where UQ is the same as U except that the quantity in (10.4.4) should be
replaced by

/ \ 2

1 r;2~4 f m + 772 - 2 1 \
1.0 CTM//? I -2 II .

\ • i 1 ~r 2 y

The estimation or test method for PBE described in Section 10.3 can be
applied to decide whether the reference-scaled bound 7^7 in (10.4.3) or the
constant-scaled bound 7^7 in (10.4.5) should be used.

Although the 2 x 2 crossover design and the 2 x 4 crossover design
have the same number of subjects, the 2 x 4 crossover design yields four
observations, instead of two, from each subject. This may increase the
overall cost substantially. As an alternative to the 2 x 4 crossover design,
Chow, Shao, and Wang (2002a) recommended a 2 x 3 extra-reference design,
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in which n\ subjects in sequence 1 receive treatments at three periods in
the order of TRR, while n-2 subjects in sequence 2 receive treatments at
three periods in the order of RTR. The statistical model under this design
is still given by (10.4.1). An unbiased estimator of 6 is

XT2 ~ ,r , ,. ,8 = - - - ~ N 6, — - — -- 1 --

where a2, b is given by (10.2.4); an unbiased estimator of of 0 5 is

-2 = (Hi - 1)5^ + (n2 - 1)^2 ^ (Tl,0.5Xn1+n2-2.
<Jl'°'5 ~ n i + n 2 - 2 ~ m + n 2 - l '

an unbiased estimator of cr2^^ is

(ni - l)4l + (n-2 - 1)42

2(m + n2 - 2) m + n2 - 2 '

and estimators <5, <rf )0 5, and O-VK^ are independent, since 0:̂ 1 — ̂ ifli , ̂ iTi —
XiR2,Zipu, and znv. are independent. Chow, Shao, and Wang (2002a) ob-
tained the following approximate 95% upper confidence bound for 7. When

2 ~~> 2
&WR — ^ch

7t/ = <52 + a^o.s - (1.5 + OIBE)&WR

where C7 is the sum of the following three quantities:

-£

n2 - 2
-L, \J. <_» I ^

\A0.95,ni+n2-2

and

- (10.4.6)
\0 .05 ,n i+n 2 -2 /

When a^R < a\,

where UQ is the same as U except that the quantity in (10.4.6) should be
replaced by

/ \ 2

2 4 / ni + n2 - 2 \
1.5 cr^^ -3 -- 1 .

\ A0.05,m+n2-2 /
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Again, the estimation or test method for PBE described in Section 10.3 can
be applied to decide which bound should be used.

To determine sample sizes n\ and n^-, we would choose n\ = n<2 = n so
that the power of the IBE test reaches a given level 1 — (3 when the unknown
parameters are set at some initial guessing values (5, a2

D, cr^/T, and &WR-
For the IBE test based on the confidence bound -yj/, its power is given by

Pn = P(lu < 0)

when 7 < 0. Consider first the case where o^R > <JQ. Let U be given in
the definition of the reference-scaled bound •ju and Up be the same as U
but with 5% and 95% replaced by (3 and 1 — /3, respectively. Since

the power Pn is approximately larger than /3 if

Let 7, U and Ui-p be 7, U and Ui-p, respectively, with parameter values
and their estimators replaced by the initial values J, cr^, cr^T, and <7J^#.
Then, the required sample size n to have approximately power 1 — (3 is the
smallest integer satisfying

7+ V/S"+ ^Ui-p <0 , (10.4.7)

assuming that n\ = n<2 = n and the initial values are the true parame-
ter values. When d^R < <JQ, the previous procedure can be modified by
replacing U by UQ in the definition of constant-scaled bound •ju- If &WR
is equal or close to <70, then we recommend the use of U instead of UQ to
produce a more conservative sample size and the use of the test approach
in the IBE test.

This procedure can be applied to either the 2 x 3 design or the 2 x 4
design.

Since the IBE tests are based on the asymptotic theory, n should be
reasonably large to ensure the asymptotic convergence. Hence, we suggest
that the solution greater than 10 from (10.4.7) be used. In other words,
a sample size of more than n=10 per sequence that satisfies (10.4.7) is
recommended.

Sample sizes n\ — n-2 — n selected using (10.4.7) with 1 — /3 = 80%
and the power Pn of the IBE test based on 10,000 simulations are listed in
Table 10.4.1 for both the 2 x 3 extra-reference design and 2 x 4 crossover
design. For each selected n that is smaller than 10, the power of the IBE
test using n* = max(n, 10) as the sample size, which is denoted by Pn* , is
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also included. It can be seen from Table 10.4.1 that the actual power Pn is
larger than the target value of 80% in most cases and only in a few cases
where n determined from (10.4.7) is very small, the power Pn is lower than
75%. Using n* = max(n, 10) as the sample size produces better results
when selected by (10.4.7) is very small, but in most cases it results in a
power much larger than 80%.

An Example

Suppose an investigator is interested in conducting a clinical trial with
2 x 4 crossover design to establish IBE between an inhaled formulation of
a drug product (test) and a subcutaneous (SC) injected formulation (refer-
ence) in terms of log-transformed AUG. Based on PK data obtained from
pilot studies, the mean difference of AUC can be assumed to be 0%. Also
it is assumed the intra-subject standard deviation of test and reference are
given by 60% and 40%, respectively. It is further assumed that the inter-
subject standard deviation of test and reference are given by 10% and 40%,
respectively. The inter-subject correlation coefficient (p) is assumed to be
0.75. According to Table 10.4.1, a total of 22 subjects per sequence are
needed in order to achieve an 80% power at the 5% level of significance.

10.5 In Vitro Bioequivalence

Statistical methods for assessment of in vitro bioequivalence testing for
nasal aerosols and sprays can be classified as the nonprofile analysis and
the profile analysis. In this section, we consider sample size calculation for
nonprofile analysis.

The nonprofile analysis applies to tests for dose or spray content uni-
formity through container life, droplet size distribution, spray pattern, and
priming and repriming. The FDA adopts the criterion and limit of the
PBE for assessment of in vitro bioequivalence in the nonprofile analysis.
Let 9 be defined in (10.1.1) with independent in vitro bioavailabilities T/T,
yR, and y'R, and let 9BE be the bioequivalence limit. Then, the two formu-
lations are in vitro bioequivalent if 0 < 9BE- Similar to the PBE, in vitro
bioequivalence can be claimed if the hypothesis that 9 > 9BE is rejected at
the 5% level of significance provided that the observed ratio of geometric
means is within the limits of 90% and 110%.

Suppose that m? and ra# canisters (or bottles) from respectively the
test and the reference products are randomly selected and one observation
from each canister is obtained. The data can be described by the following
model:

yjk = V k + £ j k , j = l,. . . ,m f c , (10.5.1)
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Table 10.4.1: Sample Size n Selected Using (10.4.7) with 1-0 = 80%
and the Power Pn of the IBE Test Based on 10,000 Simulations

Parameter

0 .15 .15

0 .2 .15

0 .15 .2

0 .2 .2

0 .3 .2
.2 .15 .15

.2 .15 .2

.2 .2 .2

0 .15 .3

0 .3 .3

0 .2 .5

0 .5 .5

.2 .2 .3

.2 .3 .3

.2 .3 .5

0
.1
.2
0
.1
.2
0
.1
.2
0
.1
.2
0
0
.1
0
.1
0
.2
0
.1
.2
.3
.4
0
.1
.2
.3
0
.1
.2
.3
.4
.5
.6
.7
0
.1
.2
.3
.5
0
.1
.2
.3
0
.1
0
.1
.2
.3
.4

2 x
n
5
6
13
9
12
35
9
12
26
15
20
52
91
20
31
31
43
59
91
7
7
10
16
45
15
17
25
52
6
6
7
8
10
14
24
51
15
16
18
23
52
13
15
21
43
26
30
9
9
10
12
16

Sextra

.7226

.7365

.7718

.7480

.7697

.7750

.8225

.8523

.8389

.8206

.8373

.8366

.8232

.7469

.7577

.8238

.8246

.8225

.8253

.8546

.8155

.8397

.7973

.8043

.7931

.7942

.8016

.7992

.8285

.8128

.8410

.8282

.8147

.8095

.8162

.8171

.7890

.8000

.7980

.8002

.7944

.7870

.8007

.7862

.8037

.7806

.7895

.8038

.7958

.7966

.7929

.7987

— reference
n* Pn*
10 .9898
10 .9572
13
10 .8085
12
35
10 .8723
12
26
15
20
52
91
20
31
31
43
59
91
10 .9607
10 .9401
10
16
45
15
17
25
52
10 .9744
10 .9708
10 .9505
10 .9017
10
14
24
51
15
16
18
23
52
13
15
21
43
26
30
10 .8502
10 .8392
10
12
16

n
4
5
9
7
8
23
8
10
23
13
17
44
71
17
25
28
39
51
79
6
7
9
15
43
13
14
21
44
6
6
7
8
10
14
23
49
13
13
15
19
44
12
14
20
40
22
26
8
9
9
11
15

2 X ̂ crossover
Pn n* Pn*
.7007
.7837
.7607
.7995
.7468
.7835
.8446
.8424
.8506
.8591
.8532
.8458
.8454
.7683
.7609
.8358
.8296
.8322
.8322
.8288
.8596
.8352
.8076
.8076
.8162
.8057
.8079
.8009
.8497
.8413
.8600
.8548
.8338
.8248
.8149
.8170
.8132
.7956
.8033
.8063
.8045
.7970
.8144
.8115
.8034
.7877
.8039
.8050
.8460
.7954
.8045
.8094

10
10
10
10
10
23
10
10
23
13
17
44
71
17
25
28
39
51
79
10
10
10
15
43
13
14
21
44
10
10
10
10
10
14
23
49
13
13
15
19
44
12
14
20
40
22
26
10
10
10
11
15

.9998

.9948

.8104

.9570

.8677

.9314

.9781

.9566

.8697

.9810

.9759

.9628

.9239

.8947

.8799

.8393

n* = max(ri, 10)
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where k = T for the test product, k = R for the reference product, /J,T and
^fl are fixed product effects, and e^'s are independent random measure-
ment errors distributed as 7V(0,<7^), k — T,R. Under model (10.5.1), the
parameter 9 in (10.1.1) is equal to

(Pr - Mi,)' + 4 - 4,UJ}~ " (10-5-2)

and 9 < 9BE if and only if £ < 0, where

Under model (10.5.1), the best unbiased estimator of 8 = /J,T — [iR is

2 2 \

JUT

where y^ is the average of yjk over j for a fixed k. The best unbiased
estimator of cr2 is

2 2

- \2

Using the method for IBE testing (Section 10.4), an approximate 95% upper
confidence bound for C in (10.5.3) is

Oy = <52 + ST - s2
R - 6 BE max{o-Q, s2

R} + \/t/o,

where UQ is the sum of the following three quantities:

-i 2

mT -

Xo.95,mT-l

and

and c = 1 if s2^ > CTQ and c = 0 if s2^ < <TQ . Note that the estimation method
for determining the use of the reference-scaled criterion or the constant-
scaled criterion is applied here. In vitro bioequivalence can be claimed if
£[/ < 0. This procedure is recommended by the FDA guidance.
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To ensure that the previously described test has a significant level close
to the nominal level 5% with a desired power, the FDA requires that at least
30 canisters of each of the test and reference products be tested. However,
nik = 30 may not be enough to achieve a desired power of the bioequivalence
test in some situations (see Chow, Shao, and Wang, 2002c). Increasing rafc
can certainly increase the power, but in some situations, obtaining repli-
cates from each canister may be more practical, and/or cost-effective. With
replicates from each canister, however, the previously described test proce-
dure is necessarily modified in order to address the between- and within-
canister variabilities.

Suppose that there are n^ replicates from each canister for product k.
Let yijk be the ith replicate in the jth canister under product k, bjk be the
between-canister variation, and eijk be the within-canister measurement
error. Then

Hk + bjk + eijk, i = l , . . . ,n f c , j = l , . . . ,m f c , (10.5.4)

where bjk ~ JV(0,a|fc), e,ljk ~ JV(0,cr^fc), and bjk's and eijk's are inde-
pendent. Under model (10.5.4), the total variances o\ and a\ in (10.5.2)
and (10.5.3) are equal to V^T + ̂ WT an<^ ̂ R + ̂ WRI respectively, i.e., the
sums of between-canister and within-canister variances. The parameter 0
in (10.1.1) is still given by (10.5.2) and 0 < 6BE if and only if C < 0, where
£ is given in (10.5.3).

Under model (10.5.4), the best unbiased estimator of S = HT — nfi is

2
A £J _i_ Pfi i vy * _L
O, -|- ~r T^

ST , '-'Bfl , UV^T , ^V^fi \

where yk is the average of y^ over i and j for a fixed k.

To construct a confidence bound for C in (10.5.3) using the approach
in IBE testing, we need to find independent, unbiased, and chi-square dis-
tributed estimators of <j^ and cr2

R. These estimators, however, are not
available when n/j > 1. Note that

lfc 1<7v^A- can ^e estimated by

SBA: =

'»t
'2 _ L V^An . „-.. ^2

mk

where yj^ is the average of y^ over i; cr^^ can be estimated by

mk nk .Jl '2
1

ITK yin) / i \ '
. = I . = 1 m f c (n f c - l )
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and 6, s2
Bk, sf^fe, k = T, R, are independent. Thus, an approximate 95%

upper confidence bound for £ in (10.5.3) is

BR ""WR

where C7 is the sum of the following five quantities,

\8\ + 20.05
'BT

1
v
A0.95,mr-l

SWT

- 1

^0.05,mR-l
-1

and

^ ^ .i-j / \ n, / vv IL i <£ i '
\A0.05,TnR(nR-l) /

and c = 1 if SBJR + (I —^^^sfy^R > &Q and c = 0 if s23/j + ( l— n^}s^R < crfi.
In vitro bioequivalence can be claimed if Cf/ < 0 provided that the observed
ratio of geometric means is within the limits of 90% and 110%.

Note that the minimum sample sizes required by the FDA are ra^ = 30
canisters and rik = 1 observation from each canister. To achieve a desired
power, Chow, Shao, and Wang (2002c) proposed the following procedure
of sample size calculation. Assume that m = TUT = mR and n = HT = nR.
Let t/> = (^)0"23'r'(j23fi'(TiW'cr2v/z) De ^^e vector of unknown parameters
under model (10.5.4). Let U be given in the definition of (,u and U\-0 be
the same as U but with 5% and 95% replaced by (3 and 1 — /3, respectively,
where 1 — (3 is a given power. Let U and C/i_/3 be U and t/i_/3, respectively,
with (<5, s2

BT, s2
BR, 52yT,s2

Vfi) replaced by ^, an initial guessing value for
which the value of £ (denoted by <^) is negative. From the results in Chow,
Shao, and Wang (2002c), it is advantageous to have a large ra and a small
n when ran, the total number of observations for one treatment, is fixed.
Thus, the sample sizes ra and n can be determined as follows.
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Table 10.5.1: Selected Sample Sizes ra* and n^
and the Actual Power p (10,000 Simulations)

&BT

0

.25

.50

.25

.50

<7 H R 0 w T

0 .25

.25

.50

.25 .25

.25

.50

.25 .25

.50 .25
.50

.25

.50

.50 .25

.50

ffW R

.25

.50

.50

.25

.50

.50

.50

.25

.25

.50

.50

.50

.50

6
.0530
0

.4108

.2739

.1061
0

.0750
0

.4405

.2937

.1186
0

.1186
0

.2937

.1186
0

.5809

.3873

.3464

.1732

.3464

.1732

.1500
0

Step 1
P

.4893

.5389

.6391

.9138

.4957

.5362

.4909

.5348

.5434

.8370

.4893

.5332

.4903

.5337

.8357

.5016

.5334

.6416

.9184

.6766

.8470

.6829

.8450

.4969

.5406

Step
m* , n»
55, 1
47,1
45, 1

55, 1
47,1
55,1
47, 1
57, 1

55, 1
47,1
55,1
47,1

55, 1
47, 1
45,1

38,1

38,1

55, 1
47,1

2
P

.7658

.7546

.7973

.7643

.7526

.7774

.7533

.7895

.7683

.7535

.7660

.7482

.7717

.7484

.7882

.7741

.7842

.7612

.7534

Step
m« , n*
30.2
30,2
30.2

30,2
30,2
30,3
30,2
30,3

30,2
30,2
30,4
30,3

30,4
30.3
30,2

30,2

30,2

30,3
30,2

2'
P

.7886

.8358

.8872

.7875

.8312

.7657

.7323

.8489

.7515

.8091

.7586

.7778

.7764

.7942

.7884

.8661

.8045

.7629

.7270

In step 1, m» = 30, ri» = 1

Step 1. Set m = 30 and n = 1. If

C + vc/ + (10.5.5)

holds, stop and the required sample sizes are m = 30 and n = 1;
otherwise, go to step 2.

Step 2. Let n = 1 and find a smallest integer ra* such that (10.5.5)
holds. If m* < rn+ (the largest possible number of canisters in a
given problem), stop and the required sample sizes are m = m* and
n = l ; otherwise, go to step 3.

Step 3. Let m = ra+ and find a smallest integer n* such that (10.5.5)
holds. The required sample sizes are ra = m+ and n — n*.

If in practice it is much easier and inexpensive to obtain more replicates
than to sample more canisters, then Steps 2-3 in the previous procedure
can be replaced by
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Step 2'. Let m = 30 and find a smallest integer n* such that (10.5.5)
holds. The required sample sizes are m = 30 and n = n*.

Table 10.5.1 contains selected ra* and n* according to Steps 1-3 or Steps
1 and 2' with 1 — (3 = 80% and the simulated power p of the in vitro bioe-
quivalence test using these sample sizes.

An Example

Suppose an investigator is interested in conducting a clinical trial with
a parallel design with no replicates to establish in vitro bioequivalence be-
tween a generic drug product (test) and a brand name drug product (refer-
ence) in terms of in vitro bioavailability. Based on data obtained from pilot
studies, the mean difference can be assumed to be 0% (6 = 0.00). Also, it is
assumed the intra-subject standard deviation of test and reference are given
by 50% and 50%, respectively. It is further assumed that the inter-subject
standard deviation of the test and the reference are given by 50% and 50%,
respectively. According to Table 10.5.1, 47 subjects per treatment group
are needed in order to yield an 80% power at the 5% level of significance.





Chapter 11

Nonpar ametrics

In clinical trials, a parametric procedure is often employed for evaluation
of clinical efficacy and safety of the test compound under investigation. A
parametric procedure requires assumptions on the underlying population
from which the data are obtained. A typical assumption on the underlying
population is the normality assumption. Under the normality assumption,
statistical inference regarding treatment effects can be obtained through
appropriate parametric statistical methods such as the analysis of variance
under valid study designs. In practice, however, the primary assumptions
on the underlying population may not be met. As a result, parametric
statistical methods may not be appropriate. In this case, alternatively,
a nonparametric procedure is often considered. Nonparametric methods
require few assumptions about the underlying populations, which are ap-
plicable in situations where the normal theory cannot be utilized. In this
chapter, procedures for sample size calculation for testing hypotheses of
interest are obtained under appropriate nonparametric statistical methods.

In the next section, the loss in power due to the violation of the nor-
mality assumption is examined. Nonparametric methods for testing differ-
ences in location are discussed for one-sample and two-sample problems,
respectively, in Sections 11.2 and 11.3. Included in these sections are the
corresponding procedures for sample size calculation. Nonparametric tests
for independence and the corresponding procedure for sample size calcula-
tion are given in Section 11.4. Some practical issues are presented in the
last section.

277
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11.1 Violation of Assumptions

Under a parametric model, normality is probably the most commonly made
assumption when analyzing data obtained from clinical trials. In practice,
however, it is not uncommon that the observed data do not meet the nor-
mality assumption at the end of the trial. The most commonly seen vio-
lation of the normality assumption is that the distribution of the observed
variable is skewed (either to the right or to the left). In this case, a log-
transformation is usually recommended to remove the skewness before data
analysis. For a fixed sample size selected based on the primary assumption
of normality, it is then of interest to know how the power is affected if
the primary assumption is seriously violated. For illustration purpose, in
this section, we address this question for situations when comparing means.
Other situations when comparing proportions or time-to-event data can be
addressed in a similar manner.

Consider a randomized, parallel-group clinical trial comparing a treat-
ment group and an active control agent. Let xij be the observation from
the jth subject in the iih treatment, i = 1,2, j = l , . . . ,n. It is assumed
that log(xjj) follows a normal distribution with mean /^ and variance cr2.
Let p* = E ( x i j ) — eM'+c r*/2 . The hypothesis of interest is to test

HQ : //i = //2 versus Ha : n\ ^ /4,

which is equivalent to

H0 : Hi = fa versus Ha : m ^ /^2-

At the planning stage of the clinical trial, sample size calculation is
performed under the assumption of normality and the assumption that a
two-sample t-test statistic will be employed. More specifically, the test
statistic is given by

where xi is the sample mean of the ^th treatment group and s2 is the
pooled sample variance of x^'s. We reject the null hypothesis at the a
level of significance if

\TI\ > za/2.
Under the alternative hypothesis that //i ^ /U2, the power of the above
testing procedure is given by

_ eM2|
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At end of the trial, it is found that the observed data is highly skewed
and hence a log-transformation is applied. After the log-transformation,
the data appear to be normally distributed. As a result, it is of interest to
compare the power of the two-sample t-test based on either the untrans-
formed (raw) data or the log-transformed data to determine the impact of
the violation of normality assumption on power with the fixed sample size
n selected under the normality assumption of the untransformed data. Let
yij — log(xij}. The test statistic is given by

- y2) ,

where y~i is the sample mean of the log-transformed response from the
iih treatment group and s2 the pooled sample variance based on the log-
transformed data. The power of the above test is given by

From (11.1.1) and (11.1.3), the loss in power is

q>

It can be seen that the violation of the model assumption can certainly
have an impact on the power of a trial with a fixed sample size selected un-
der the model assumption. If the true power is below the designed power,
the trial may fail to detect a clinically meaningful difference, when it truly
exists. If the true power is above the designed power, then the trial is
not cost-effective. This leads to a conclusion that incorrectly applying a
parametric procedure to a data set, which does not meet the parametric
assumption, may result in a significant loss in power and efficiency of the
trial. As an alternative, a nonparametric method is suggested. In what
follows, sample size calculations based on nonparametric methods for com-
paring means are provided.

11.2 One-Sample Location Problem

As discussed in Chapter 3, one-sample location problem concerns two types
of data. The first type of data consists of paired replicates. In clinical
research, it may represents pairs of pre-treatment and post-treatment ob-
servations. The primary interest is whether there is a shift in location due
to the application of the treatment. The second type of data consists of
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observations from a single population. Statistical inference is made on the
location of this population. For illustration purposes, in this section, we
focus on nonparametric methods for paired replicates. Let Xi and yi be
the paired observations obtained from the ith subject before and after the
application of treatment, i = 1, ...,n. Let zl = yi — Xi, i = 1, ...,n. Then,
Zi can be described by the following model:

Zi = 9 + ei, 2 = 1, ...,n,

where 9 is the unknown location parameter (or treatment effect) of interest
and the ej's are unobserved random errors having mean 0. It is assumed
that (i) each ej has a continuous population (not necessarily the same one)
that is symmetric about zero and (ii) the gj's are mutually independent.
The hypotheses regarding the location parameter of interest are given by

H0 : 0 = 0 versus Ha : 0 / 0.

To test the above hypotheses, a commonly employed nonparametric test is
the Wilcoxon signed rank test. Consider the absolute differences \zi\,i =
1, ...,n. Let Ri denote the rank of \Zi\ in the joint ranking from least to
greatest. Define

1 if zx > 0 . ,
n .f ^ n i = l , . - . ,n.
0 if Zi < 0

The statistic

1=1

is the sum of the positive signed ranks. Based on T+, the Wilcoxon signed
rank test rejects the null hypothesis at the a level of significance if

T1 ~^~ "̂ > -t- ( \

or

where t(a, n) satisfies
P(T+ > t(a,n)) = a

under the null hypothesis and a: = a\ + 0.2- Values of t(a,n) are given
in the most standard nonparametric references (e.g., Hollander and Wolfe,
1973). It should be noted that under the null hypothesis, the statistic

T + - n n

V/n(n+l ) (2n+l ) /24
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has an asymptotic standard normal distribution. In other words, we may
reject the null hypothesis at the a level of significance for large n if

\T*\>za/2.
To derive a formula for sample size calculation, we note that

1=1 j-1

= E^ + E WN ^ N^* +
i=l i<j

Hence, the variance of T+ can be obtained as

var(T+) = nvar(^)

2n(n- l)cov(^,/{|^| > \Zj\}^ + I{\z,\ >

n(n- l)(n-2)c

pi) + n(n -

+ n(n - l)(n - 2)(p3 + 4p4 - 4p|),

where

pi = P(^ > 0)

P2 =P(\Zi\ > | ^ - | , ^>0)

P3 = P(\Zi\ > I^M^I > \zh\,Zi >0)
p4 = P(\zh\ > \z{\ > \zh\,zh > 0,2Z > 0).

It should be noted that the above quantities can be readily estimated based
on data from pilot studies. More specifically, suppose that zi,...,zn are data
from a pilot study. Then, the corresponding estimators can be obtained as
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P3 =
77 (n —

I{\zl\>\zjl\J\zl\>\zh\,zl>0}

P4 =
n(n

Under the alternative hypothesis, E(T+) ^ n(n
4

+1). T+ can be approxi-
mated by a normal random variable with mean E(T+) = npi + n(n — 1)^2
and variance var(T+). Without loss of generality, assume that E(T+) >
77(ri + l)/4. Thus, the power of the test can be approximated by

Power = P(|T*| > .~a/2)

« P(T* > za/2)

l)(2n + l)/24
n(n + 1)

1 -

The last approximation in the above equation is obtained by ignoring the
lower order terms of n. Hence, the sample size required for achieving the
desired power of 1 - (3 can be obtained by solving the following equation:

This leads to

1r>21F2

(l/4-p2) s

Remark

As indicated before, when there are no ties,

When there are ties, var(T+) is given by

l)(2n
24

where p is the number of tied groups and tj is the size of tied group j.
In this case, the above formula for sample size calculation is necessarily
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modified.

An Example

To illustrate the use of sample size formula derived above, we consider
the same example concerning a study of osteoporosis in post-menopausal
women described in Chapter 3 for testing one-sample. Suppose a clinical
trial is planned to investigate the effect of a test drug on the prevention of
the progression to osteoporosis in women with osteopenia. Suppose that
a pilot study with 5 subjects was conducted. According to the data from
the pilot study, it was estimated that pi = 0.30, p% = 0.40, and p± = 0.05.
Hence, the sample size needed in order to achieve an 80% power for detec-
tion of such a clinically meaningful improvement can be estimated by

(za/2/^-

(1/4 -P2)2

_ (1.96/V12 + 0.84^0.4 + 4 x 0.05 - 4 x 0.32)2

~ (0.25 - 0.3)2

« 383.

Thus, a total of 383 subjects are needed in order to have an 80% power to
confirm the observed post-treatment improvement.

11.3 Two-Sample Location Problem

Let Xi, i = l,...,ni, and yj, j = I,. . . ,ri2, be two independent random
samples, which are respectively from a control population and a treatment
population in a clinical trial. Suppose that the primary objective is to
investigate whether there is a shift of location, which indicates the presence
of the treatment effect. Similar to the one-sample location problem, the
hypotheses of interest are given by

HQ : 6 = 0 versus Ha:O^Q,

where 9 represents the treatment effect. Consider the following model:

and

where the e^s are random errors having mean 0. It is assumed that (i)
each 6i comes from the same continuous population and (ii) the ni + n^
e^s are mutually independent. To test the above hypotheses, the Wilcoxon
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rank sum test is probably the most commonly used nonparametric test
(Wilcoxon, 1945; Wilcoxon and Bradley, 1964; Hollander and Wolfe, 1973).
To obtain the Wilcoxon's rank sum test, we first order the N = n\ + n<2
observations from least to greatest and let Rj denote the rank of yj in this
ordering. Let

3 = 1

which is the sum of the ranks assigned to the y/s. We then reject the null
hypothesis at the a level of significance if

T T 7 \ , / \

or
T T 7 - -̂  / . - -i \ / \

where a — ai + c*2 and «;(o:, 712,^1) satisfies

P(W > w ( a , H Z , n \ ) } = a

under the null hypothesis. Values of w(a, n2, n^) are given in the most stan-
dard nonparametric references (e.g., Hollander and Wolfe, 1973). Under the
null hypothesis, the test statistic

W - E(W] W - kn2(n2 + ni + 1)W * = J-J\rr J 2 ^\ -* x / / 1 1 Q 1 \

is asymptotically distributed as a standard normal distribution. Thus, by
normal theory approximation, we reject the null hypothesis at the a level
of significance if \W*\ > za/2-

Note that W can be written as

Hence, the variance of W is given by

n2(n2
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- l)cov(I{yi > xh},

nm2(n2 - l)cov(I{yil > Xj},I{yi2 > Xj})

- I)(p2 -pi)

Pi)

where

Pi = P(Vi > Xj)
P2 = P(yi > xh and yi > xJ2)

p3 = P(yil > Xj and yi2 > Xj).

The above quantities can be estimated readily based on data from pilot
studies. More specifically, assume that xi,...,xni and yi,...,yU2 are the
data from a pilot study. The corresponding estimators can be obtained as

1= =
-, T12

i ~ *h ̂  * -n\n2(ni — \\^—
' r=i ji^h

m
T)o — \ \ J J ft • ^> £ . rtJ^Q 7/ • ^> £ • \

nin2(n2 - 1) -^ ̂  *i - j »2 - j j -

Under the alternative hypothesis that 6 ^ 0, it can be shown that
Pi ^ V2,

n2(n2 + 1)

and that VT can be approximated by a normal random variable with mean

n2(n2 + 1)

and variance

<?w = nin2pi(l - pi) + nin2(ni - I)(p2 -p?) + nin2(n2 - I)(p3 -pf).

Without loss of generality, we assume that p\ > 1/2. The power of the test
can be approximated by

P(|^*|>2Q/2)

P(W* > za/2)

l 2 - n n

n2 + 1)/12 + mn2(l/2 - pi)
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Under the assumption that n\/n-2 —->• K, the above equation can be further
approximated by

za/2
Power = 1 — $ — -

4-
.

\/«2(P2 - Pi) + «(pa - Pi) /

As a result, the sample size needed in order to achieve a desired power of
1 — /3 can be obtained by solving

Za/2 * \A(1 + «0/12 + V
/n2«(l/2 - pi)

which leads to n\ = nn^ and

(*q/2>/K(ft + 1)12

«2( l /2-pi)2

Remark

As indicated in (11.3.1), when there are no ties,

HI + n2 4- 1
var(Iy ) = - .v ; 12

When there are ties among the N observations,

12
+ ri2 + 1 —

+n2

where 19 is the number of tied groups and tj is the size of tied group j. In
this case, the above formula for sample size calculation is necessary modi-
fied.

An Example

To illustrate the use of the sample size formula derived above, we consider
the same example concerning a clinical trial for evaluation of the effect of
a test drug on cholesterol in patients with coronary heart disease (CHD).
Suppose the investigator is interested in comparing two cholesterol lowering
agents for treatment of patients with CHD through a parallel design. The
primary efficacy parameter is the LDL. The null hypothesis of interest is
the one of no treatment difference. Suppose that a two-arm parallel pilot
study was conducted. According to the data given in the pilot study, it
was estimated that p2 = 0.70. j>3 = 0.80, and p4 = 0.80. Hence, the sample
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size needed in order to achieve an 80% power for detection of a clinically
meaningful difference between the treatment groups can be estimated by

n =
(1/2 - PiY

_ + 0.84\/0.80 + 0.80 - 2 x P/TO2")2

~ (0.50 - 0.70)2

«54.

Hence, a total of 54 subjects is needed in order to have an 80% power to
confirm the observed difference between the two treatment groups when
such a difference truly exists.

11.4 Test for Independence

In many clinical trials, data collected may consist of a random sample
from a bivariate population. For example, the baseline value and the post-
treatment value. For such a data set, it is of interest to determine whether
there is an association between the two variates (say x and y) involved in the
bivariate structure. In other words, it is of interest to test for independence
between x and y. Let (o^y^), i = l,...,n, be the n bivariate observation
from the n subjects involved in a clinical trial. It is assumed that (i) (xi, y^),
i = 1, ...,n, are mutually independent and (ii) each (x^y^) comes from the
same continuous bivariate population of (x, y). To obtain a nonparametric
test for independence between x and y, define

r = 2P{(Xl - £2X2/1 - 2/2) > 0} - 1,

which is the so-called Kendall coefficient. Testing the hypothesis that x
and y are independent, i.e.,

HQ : P(x < a and y < b) = P(x < a)P(y < b) for all a and 6

is equivalent to testing the hypothesis that r = 0. A nonparametric test can
be obtained as follows. First, for 1 < i < j< n, calculate (,(xi,Xj,yi, y^),
where

1 if (a - b)(c - d) > 0

For each pair of subscripts ( i , j ) with i < j, (,(xi,Xj,yi,yj) = 1 indicates
that (xi — Xj}(yi — yj) is positive while C(^5 %j, yi-, Vj] = —1 indicates that
(xi — Xj)(yi — yj) is negative. Consider

n— 1

K =
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We then reject the null hypothesis that r = 0 at the a level of significance
if

K > k(a2,n) or K < —fc(a i ,n ) ,

where k(a,n) satisfies
P(K > k(a,n)) = a

and a = a\ + a^. Values of k(a,n) are given in the most standard non-
parametric references (e.g., Hollander and Wolfe, 1973). Under the null
hypothesis,

(11.4.1)

is asymptotically distributed as a standard normal. Hence, we would reject
the null hypothesis at the a level of significance for large samples if \K*\ >
za/2- It should be noted that when there are ties among the n x observations
or among the n y observations, £(a, 6, c, d) should be replaced with

1 if(a-b)(c-d) > 0
C*(a,6,c,d) = < 0 if (a-b)(c-d) =0

-1 if (a-b}(c-d) <0.

As a result, under HQ, vai(K] becomes

var(X) = —v ; 18
(n- l ) (2ra + 5) 5)

i = l

1

9n(n —
^T

-2)

1
1n(n - 1) .1=1

where g is the number of tied x groups, ti is the size of the tied x group i,
h is the number of tied y groups, and Uj is the size of the tied y group j.

A formula for sample size calculation can be derived base on test (11.4.1).
Define



11.4. Test for Independence 289

It follows that
/ n—1 n

var(K) = var ^ ̂  (ij

\
n(n- 1)

= o var(Ctj) + n(n

+ n(n —

where

pi = P((XI - £2X2/1 - 2/2) > 0)

pi = P((XI - £2X2/1 - 2/2X21 ~ ^3X2/1 - 2/a) > 0).

The above quantities can be readily estimated based on data from pilot
studies. More specifically, let (xi ,2/ i ) , - . - , (xn,yn) be the data from a pilot
study, the corresponding estimators can be obtained by

_ 1
n(n — 1)

1
/ _ i x ^ _ o ^ J i i 2 j 2 -n(n L)(n Z)i*h*h

Under the alternative hypothesis, K is approximately distributed as a
normal random variable with mean

n(n — 1) . .
PK = V

 2 ^(2^1 - 1)

and variance

4 - ̂ "^[l - (1 - 2P1)
2] + n(n - l)(n - 2)[2p2 - 1 - (1 - 2Pl)

2].

Without loss of generality, we assume p\ > 1/2. The power of test (11.4.1)
can be approximated by

Power = P(\K*\>za/2)
« P(K* > za/2)

- l)(2n + 5)/18 - n(n - l)(Pl - 1/2)
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Hence, the sample size needed in order to achieve a desired power of 1 — /3
can be obtained by solving the following equation:

1/2)

1 - (2P1 - I)

This leads to

- 1 - (2pi - I)2)2

(2pi - I)2

An Example

In a pilot study, it is observed that a larger x value resulted in a larger
value of y. Thus, it is of interest to conduct a clinical trial to confirm such
an association between two primary response, x and y, truly exists. Sup-
pose that a two-arm parallel pilot study was conducted. Base on the data
from the pilot study, it was estimated that p\ = 0.60 and p% = 0.70. Hence,
the sample size required for achieving an 80% power is

= (*g/2/3 + W2P2 - 1 - (2pi :rlF)2

" ~ (Pi - 0.5)2

- (L96/3 + °-84V2 x °-70 ~ 1 - (L2Q ~ i-oo)2)2

_ (0.6-0.5)2

w 135.

Thus, a total of 135 subjects is needed in order to achieve an 80% power
to confirm the observed association in the pilot study.

11.5 Practical Issues

11.5.1 Bootstrapping

When a nonparametric method is used, a formula for sample size calculation
may not be available or may not exist a closed form especially when the
study design/objective is rather complicated. In this case, the technique of
bootstrapping may be applied. For more details, see Shao and Tu (1999).

11.5.2 Comparing Variabilities

In practice, it is often of interest to compare variabilities between treat-
ments observed from the trials. Parametric methods for comparing vari-
abilities is examined in Chapter 9. Nonparametric methods for comparing
variabilities between treatment groups, however, are much more compli-
cated and require further research.



11.5. Practical Issues 291

11.5.3 Multiple-Sample Location Problem

When there are more than two treatment groups, the method of analysis
of variance is usually considered. The primary hypothesis is that there
are no treatment differences across the treatment groups. Let x^-, be the
observation from the ith subject receiving the jth treatment, where i —
1, ...,rij and j = 1,..., k. Similar to the analysis of variance model for the
parametric case, we consider the following model:

%ij = /^ + TJ + GIJ , I = I, ..., nj, J = 1, ..., K,

where //, is the unknown overall mean, TJ is the unknown jth treatment
effect and ^7-=1 TJ = 0. It is assumed that (i) each €i comes from the
same continuous population with mean 0 and (ii) the e^s are mutually
independent. The hypotheses of interest are

Ho : TI = • • • = Tfc versus Ha : TI ^ TJ for some i ^ j.

To test the above hypotheses, the following Kruskal-Wallis test is useful
(Kruskal and Wallis, 1952). We first rank all N = Y^j=i nj observations
jointly from least to greatest. Let RIJ denote the rank of Xij in this joint
ranking, Rj = Y^i=i Riji R-j — Rjlnj-> and R-- — ^2^1 J = l , - - - , ^ - Note
that Rj is the sum of the ranks received by treatment j and R.j is the
average rank obtained by treatment j. Based on Rj, R.j and /?.., the
Kruskal-Wallis test statistic for the above hypotheses can be obtained as

H =

+ !)•

We reject the null hypothesis at the a level of significance if

where /i(a, k, HI , • • • , n^) satisfies

P(H > /I(Q!, fc, ni, • • • , Tifc)) = a

under the null hypothesis. Values of h(a, fe, (ni, • • • , nfc)) are given in the
most standard nonparametric references (e.g., Hollander and Wolfe, 1973).
Note that under the null hypothesis, H has an asymptotic chi-square distri-
bution with k — l degrees of freedom (Hollander and Wolfe, 1973). Thus, we
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may reject the null hypothesis at the a level of significance for large sam-
ples if H > x^ k-i' wnere Xa k-i ls tne uPPer c^th percentile of a chi-square
distribution with k — 1 degrees of freedom.

Unlike the parametric approach, formulas or procedures for sample
size calculation for testing difference in multiple-sample locations using
nonparametric methods are much more complicated. Further research is
needed.

11.5.4 Testing Scale Parameters

In clinical trials, the reproducibility of subjects' medical status in terms of
intra-subject variability is often assessed. If the intra-subject variability is
much larger than that of the standard therapy (or control), safety of the test
product could be a concern. In practice, a replicate crossover design or a
parallel-group design with replicates is usually recommended for comparing
intra-subject variability. Although nonparametric methods for testing scale
parameters are available in the literature (see, e.g., Hollander and Wolfe,
1973), powers of these tests under the alternative hypothesis are not fully
studied. As a result, further research in this area is necessary.



Chapter 12

Sample Size Calculation
in Other Areas

As indicated earlier, sample size calculation is an integral part of clinical re-
search. It is undesirable to observe positive results with insufficient power.
Sample size calculation should be performed based on the primary study
endpoint using appropriate statistical methods under a valid study design
with correct hypotheses, which can reflect the study objectives. In the pre-
vious chapters, we have examined formulas or procedures for sample size
calculation based on various primary study endpoints for comparing means,
proportions, variabilities, functions of means and variance components, and
time-to-event data. In this chapter, in addition, we discuss several proce-
dures for sample size calculation based on different study objectives and/or
hypotheses using different statistical methods, which are not covered in the
previous chapters.

In the next section, sample size calculations for dose response studies
are examined. Section 12.2 discusses sample size calculation under an anal-
ysis of variance (ANOVA) model with repeated measures. In Section 12.3,
the concept of reproducibility and sensitivity index for bridging studies is
introduced. Also included in this section is a proposed method for assessing
similarity of bridging studies, which is used for derivation of a procedure
for sample size calculation. Section 12.4 discusses sample size calculation
for assessment of quality of life (QOL) under a time series model. Statis-
tical methods and the corresponding procedure for sample size calculation
for vaccine clinical trials are briefly outlined in Section 12.5. Section 12.6
provides sample size calculation in medical imaging.

293
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12.1 Dose Response Studies

When studying the dose response relationship of an investigational drug,
a randomized, parallel-group trial involving a number of dose levels of the
investigational drug and a control is usually conducted. Ruberg (1995a,
1995b) indicated that some questions dictating design and analysis are nec-
essarily addressed. These questions include (i) Is there any drug effect? (ii)
What doses exhibit a response different from control? (iii) What is the na-
ture of the dose response relationship? and (iv) What is the optimal dose?
The first two questions are usually addressed by the analysis of variance,
and the last two questions are related to the identification of the so-called
minimum effective dose (MED). In this section, formulas for sample size
calculation are derived based on the concept of dose response study us-
ing the analysis of variance and a commonly used test (Williams' test) for
MED.

12.1.1 Dose Response Relationship

In a dose response study, suppose there is a control group and K dose
groups. The null hypothesis of interest is then given by

H0 : HO = Hi = • ' ' = HK, (12.1.1)

where Ho 1S mean response for the control group and HI is mean response for
the ith dose group. The rejection of hypothesis (12.1.1) indicates that there
is a treatment effect. The dose response relationship can then be examined
under appropriate alternative hypotheses. Under a specific alternative hy-
pothesis, the required sample size per dose group can then be obtained.
Spriet and Dupin-Spriet (1992) identified the following eight alternative
hypotheses (Ha) for dose responses:

(1) HO < Hi < ' • ' < HK~I < HK;

(2) Ho < • • ' < Hi — ' - - = Hj > ' ' ' > HK;

(3) Ho < ' • • < Hi ~ " ' ' = HK'I

(4) HO — • • • = Hi < ' ' • < HK;

(5) HO < Hi < • ' ' = Hi = ' • ' = HK;

(6) HO = Hi • •• = Hi < • ' • < HK-I < HK;

(7) HO = Hi < • ' ' < Hi = • • • = HK;

(8) HO = • • • = Hi < ' ' ' < HK-I = HK-
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Under the above alternative hypotheses, statistical tests could be very
complicated and hence there may exist no closed form for the correspond-
ing power functions. As an alternative, Spriet and Dupin-Spriet (1992)
obtained adequate sample sizes for parallel group dose response clinical tri-
als by simulations. Most recently, Fine (1997) derived a formula for sample
size calculation by evaluating the power of a test under the alternative hy-
pothesis of various linear contrasts (e.g., linear, quadratic, and cubic) of //i,
z = 0,l,. . ,/iT. In other words, the following alternative hypothesis of linear
contrast is considered:

K K

j=0 j=0

For a given contrast of means

K
c —

it can be estimated by the contrast of sample means

K
r — \^ vG - / .cjyj'

j=o

where Yj is the mean response of n patients receiving the jth dose level.
Thus,

T =

can be used to test the significance of the dose response of contrast C,
where a2 is the mean square error from the analysis of variance model used
to estimate C. Under the alternative hypothesis, the power for the contrast
is given by

Hence, the sample size required per dose group for achieving 1 — (3 power
in order to show a significance of the dose response with the contrast is
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12.1.2 Minimum Effective Dose

For the comparison of dose treatment means with a control mean, Williams
(1971, 1972) proposed a test to determine the lowest dose level at which
there is evidence for a difference from control. Williams (1971, 1972) con-
sidered the alternative hypothesis

Ha : no = HI = • • • = Hi-i < Hi < Mz+i < • • • < HK

and proposed the following test statistic:

J- i —

where s2 is an unbiased estimate of a2 which is independent of Yi and is
distributed as a^y^Jv and HI 'ls the maximum likelihood estimate of HI
which is given by

When Hi = n for i = 0, 1, ..., K^ this test statistic can be simplified as

-Li —

which can be approximated by (Xi — ZQ)/S, where

Z
— max ^ - -

l<u<i /— ' i — U+ I
j=u

and Zj follows a standard normal distribution. We then reject the null
hypothesis (12.1.1) and conclude that dose i is the minimum effective dose
if

Tj > tj(a) for all j >i,

where tj(a) is the upper ath quantile of the distribution of Tj. Values of
tj(a) are given in Tables 12.1.1-12.1.4.
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Table 12.1.1: Upper 5 Percentile tk(a) for Tk

df/v
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
35
40
60
120
OO

2
2.14
2.06
2.00
1.96
1.93
1.91
1.89
1.87
1.86
1.85
1.84
1.83
1.82
1.82
1.81
1.81
1.80
1.79
1.79
1.78
1.78
1.77
1.76
1.75
1.73
1.739

3
2.19
2.10
2.04
2.00
1.96
1.94
1.92
1.90
1.89
1.88
1.87
1.86
1.85
1.85
1.84
1.83
1.83
1.81
1.81
1.81
1.80
1.79
1.79
1.77
1.75
1.750

k --
4

2.21
2.12
2.06
2.01
1.98
1.96
1.94
1.92
1.90
1.89
1.88
1.87
1.87
1.86
1.85
1.85
1.84
1.82
1.82
1.82
1.81
1.80
1.80
1.78
1.77
1.756

= Number of Dose Levels
5

2.22
2.13
2.07
2.02
1.99
1.97
1.94
1.93
1.91
1.90
1.89
1.88
1.87
1.87
1.86
1.86
1.85
1.83
1.83
1.83
1.82
1.81
1.80
1.79
1.77
1.760

6
2.23
2.14
2.08
2.03
2.00
1.97
1.95
1.93
1.92
1.91
1.90
1.89
1.88
1.87
1.87
1.86
1.85
1.84
1.84
1.83
1.83
1.82
1.81
1.79
1.78
1.763

7
2.24
2.14
2.09
2.04
2.00
1.98
1.95
1.94
1.92
1.91
1.90
1.89
1.88
1.88
1.87
1.86
1.85
1.84
1.84
1.83
1.83
1.82
1.81
1.80
1.78
1.765

8
2.24
2.15
2.09
2.04
2.01
1.98
1.96
1.94
1.93
1.91
1.90
1.89
1.89
1.88
1.87
1.87
1.86
1.84
1.84
1.84
1.83
1.82
1.81
1.80
1.78

1.767

9
2.25
2.15
2.09
2.04
2.01
1.98
1.96
1.94
1.93
1.92
1.90
1.90
1.89
1.88
1.87
1.87
1.86
1.84
1.84
1.84
1.83
1.82
1.82
1.80
1.78
1.768

10
2.25
2.15
2.09
2.04
2.01
1.98
1.96
1.94
1.93
1.92
1.91
1.90
1.89
1.88
1.88
1.87
1.86
1.85
1.85
1.84
1.83
1.83
1.82
1.80
1.78
1.768
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Table 12.1.2: Upper 2.5 Percentile tk(o) for Tk

df/v
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
35
40
60
120
oc

2
2.699
2.559
2.466
2.400
2.351
2.313
2.283
2.258
2.238
2.220
2.205
2.193
2.181
2.171
2.163
2.155
2.141
2.130
2.121
2.113
2.106
2.093
2.083
2.060
2.037
2.015

k -
3

2.743
2.597
2.501
2.432
2.381
2.341
2.310
2.284
2.263
2.245
2.229
2.216
2.204
2.194
2.185
2.177
2.163
2.151
2.142
2.133
2.126
2.112
2.102
2.078
2.055
2.032

= Number of Dose Levels
4

2.766
2.617
2.518
2.448
2.395
2.355
2.323
2.297
2.275
2.256
2.241
2.227
2.215
2.205
2.195
2.187
2.173
2.161
2.151
2.143
2.136
2.122
2.111
2.087
2.063
2.040

5
2.779
2.628
2.528
2.457
2.404
2.363
2.330
2.304
2.282
2.263
2.247
2.234
2.222
2.211
2.202
2.193
2.179
2.167
2.157
2.149
2.141
2.127
2.116
2.092
2.068
2.044

6
2.788
2.635
2.535
2.463
2.410
2.368
2.335
2.309
2.285
2.268
2.252
2.238
2.226
2.215
2.205
2.197
2.183
2.171
2.161
2.152
2.145
2.130
2.119
2.095
2.071
2.047

8
2.799
2.645
2.543
2.470
2.416
2.375
2.342
2.315
2.292
2.273
2.257
2.243
2.231
2.220
2.210
2.202
2.187
2.175
2.165
2.156
2.149
2.134
2.123
2.099
2.074
2.050

10
2.806
2.650
2.548
2.475
2.421
2.379
2.345
2.318
2.295
2.276
2.260
2.246
2.234
2.223
2.213
2.205
2.190
2.178
2.168
2.159
2.151
2.137
2.126
2.101
2.076
2.052
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Table 12.1.3: Upper 1 Percentile tk(a) for Tk

df/v
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
35
40
60
120
oo

2
3.50
3.26
3.10
2.99
2.90
2.84
2.79
2.75
2.72
2.69
2.66
2.64
2.63
2.61
2.60
2.58
2.56
2.55
2.53
2.52
2.51
2.49
2.47
2.43
2.40
2.366

3
3.55
3.29
3.13
3.01
2.93
2.86
2.81
2.77
2.74
2.71
2.68
2.66
2.64
2.63
2.61
2.60
2.58
2.56
2.55
2.53
2.52
2.50
2.48
2.45
2.41
2.377

k --
4

3.57
3.31
3.15
3.03
2.94
2.88
2.82
2.78
2.75
2.72
2.69
2.67
2.65
2.64
2.62
2.61
2.59
2.57
2.55
2.54
2.53
2.51
2.49
2.45
2.42
2.382

= Number of Dose Levels
5

3.59
3.32
3.16
3.04
2.95
2.88
2.83
2.79
2.75
2.72
2.70
2.68
2.66
2.64
2.63
2.61
2.59
2.57
2.56
2.54
2.53
2.51
2.49
2.46
2.42
2.385

6
3.60
3.33
3.16
3.04
2.95
2.89
2.83
2.79
2.76
2.72
2.70
2.68
2.66
2.64
2.63
2.62
2.59
2.57
2.56
2.55
2.54
2.51
2.50
2.46
2.42
2.386

7
3.60
3.34
3.17
3.05
2.96
2.89
2.84
2.79
2.76
2.73
2.70
2.68
2.66
2.65
2.63
2.62
2.60
2.58
2.56
2.55
2.54
2.51
2.50
2.46
2.42
2.387

8
3.61
3.34
3.17
3.05
2.96
2.89
2.84
2.80
2.76
2.73
2.71
2.68
2.66
2.65
2.63
2.62
2.60
2.58
2.56
2.55
2.54
2.52
2.50
2.46
2.42

2.388

9
3.61
3.34
3.17
3.05
2.96
2.90
2.84
2.80
2.76
2.73
2.71
2.68
2.67
2.65
2.63
2.62
2.60
2.58
2.56
2.55
2.54
2.52
2.50
2.46
2.42
2.389

10
3.61
3.35
3.17
3.05
2.96
2.90
2.84
2.80
2.76
2.73
2.71
2.69
2.67
2.65
2.63
2.62
2.60
2.58
2.56
2.55
2.54
2.52
2.50
2.46
2.43
2.389
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Table 12.1.4: Upper 0.5 Percentile tk(a) for Tk

df/v
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
22
24
26
28
30
35
40
60
120
oc

2
4.179
3.825
3.599
3.443
3.329
3.242
3.173
3.118
3.073
3.035
3.003
2.957
2.951
2.929
2.911
2.894
2.866
2.842
2.823
2.806
2.792
2.764
2.744
2.697
2.651
2.607

k --

3
4.229
3.864
3.631
3.471
3.354
3.265
3.194
3.138
3.091
3.052
3.019
2.991
2.955
2.944
2.925
2.903
2.879
2.855
2.835
2.819
2.804
2.775
2.755
2.707
2.660
2.615

= Number of Dose Levels
4

4.255
3.883
3.647
3.484
3.366
3.275
3.204
3.147
3.100
3.060
3.027
2.998
2.973
2.951
2.932
2.915
2.855
2.861
2.841
2.824
2.809
2.781
2.759
2.711
2.664
2.618

5
4.270
3.895
3.657
3.492
3.373
3.281
3.210
3.152
3.105
3.065
3.031
3.002
2.977
2.955
2.936
2.918
2.889
2.864
2.844
2.827
2.812
2.783
2.762
2.713
2.666
2.620

6
4.279
3.902
3.663
3.497
3.377
3.286
3.214
3.156
3.108
3.068
3.034
3.005
2.980
2.958
2.938
2.920
2.891
2.866
2.846
2.829
2.814
2.785
2.764
2.715
2.667
2.621

8
4.292
3.912
3.670
3.504
3.383
3.290
3.218
3.160
3.112
3.072
3.037
3.008
2.938
2.960
2.941
2.923
2.893
2.869
2.848
2.831
2.816
2.787
2.765
2.716
2.669
2.623

10
4.299
3.197
3.674
3.507
3.886
3.293
3.221
3.162
3.114
3.074
3.039
3.010
2.984
2.962
2.942
2.925
2.895
2.870
2.850
2.832
2.817
2.788
2.766
2.717
2.669
2.623
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Since the power function of the above test is rather complicated, as
an alternative, we may consider the following approximation to obtain the
required sample size per dose group. Note that

power = P {reject HQ \ ̂  > p,Q + A for some i]

> P {reject H0 \ HQ = Hi = - - = H K - I , PK = Vo + A}

>P{YK • '" >tK(a/2) = Vo +

where A is the clinically meaningful difference. If a one-sided alternative
is desired, tx(o:) should be used. To have a power of 1 — /3, the required
sample size can be obtained by solving

Thus, we have

. 2 , y-^.^.^y

where values of ̂ (a/2) can be obtained form Tables 12.1.1-12.1.4.

12.1.3 An Example

To illustrate sample size calculation based on Williams' test, consider a
dose response study concerning three doses of an investigational drug for
determination of minimum effective dose. Suppose that the standard devi-
ation of the response variable is 45 and the clinically meaningful difference
is 25. By Table 12.1.2, we have £3(0.025) = 2.032. Then, by (12.1.3), we
have

_ 2(45)2(2.032 + 0.842)2

H ~ (25p -54'

Thus, 54 subjects per treatment group are needed in order to have an 80%
power for determination of the minimum effective dose for the doses under
study.
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12.2 ANOVA with Repeated Measures

In clinical research, it is not uncommon to have multiple assessments in a
parallel-group clinical trial. The purpose of such a design is to evaluate the
performance of clinical efficacy and/or safety over time during the entire
study course. Clinical data collected from such a design is usually analyzed
by means of the so-called analysis of variance (ANOVA) with repeated
measures. In this section, formulas for sample size calculation under the
design with multiple assessments is derived using the method of analysis of
variance with repeated measures.

12.2.1 Statistical Model

Let Bij and Hijt be the illness score at baseline and the illness score at
time t for the jth subject in the ith treatment group, t = l,...,m^, j =
1, ..., Hi, and i = 1, ..., k. Then, Yijt — Hijt — Bij, the illness scores adjusted
for baseline, can be described by the following statistical model (see, e.g.,
Longford, 1993; Chow and Liu, 2000):

where on is the fixed effect for the ith treatment ( X^=i ai ~ 0), &ij ls

the random effect due to the jth subject in the ith treatment group, bij is
the coefficient of the jth subject in the ith treatment group and e^ is the
random error in observing Y^. In the above model, it is assumed that (i)
S^-'s are independently distributed as 7V(0,<r|), (ii) 6^'s are independently
distributed as JV(0,<j|), and (iii) e^'s are independently distributed as
7V(0,(j2). For any given subject j within treatment i, Y^t can be described
by a regression line with slope brj conditioned on S^-, i.e.,

where ̂  — JJL + ai + S^. When conditioned on 5^, i.e., it is considered as
fixed, unbiased estimators of the coefficient can be obtained by the method
of ordinary least squares (OLS), which are given by

? _
Uj j —

The sum of squared error for the jth subject in the ith treatment group,
denoted by SSEij, is distributed as 0"2Xm-.--2- Hence, an unbiased estimator
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of cr2, the variation due to the repeated measurements, is given by

Since data from subjects are independent, Ei=i E?=i SSEij is distributed

as &2Xn*i where n* = Et=i E?ii(mi7 ~ 2). Conditioning on 5^ and bij,
we have

m,-

Thus, unconditionally,

,2 , J2

b^ ~ N

When there is an equal number of repeated measurements for each sub-
ject, i.e., rnij — m for all z, j, the inter-subject variation, <j|, can be esti-
mated by

O ^—« fa i . \

where
1 nt

Ai. = — J^Aij-

J = l

An estimator of the variation of 6^ can then be obtained as

Efc v-»ni / i i \2
„ i=l Z^j=li6*J - OtJ ,2

where
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Similarly, fli can be estimated by

-, n,

where
2 2 ff2 rn

13 ni m^k- t2 - (Y^k- ti)2'

12.2.2 Hypotheses Testing

Since the objective is to compare the treatment effect on the illness scores,
it is of interest to test the following hypotheses:

HQ : on — cii> versus Ha '• on ^ a^.

The above hypotheses can be tested by using the statistic

Under the null hypotheses of no difference in the illness score between two
treatment groups, T\ follows a t distribution with Ei=i(n« ~ -0 degrees of
freedom. Hence, we reject the null hypothesis at the a level of significance
if

Furthermore, it is also of interest to test the following null hypothesis of
equal slopes (i.e., rate of change in illness scores over the repeated measure-
ment)

HQ : fa = fa> versus Ha : fa ^ &v.

The above hypotheses can be tested using the following statistic

L.

Under the null hypotheses, T% follows a t distribution with 2^i=\(ni ~
1) degrees of freedom. Hence, we would reject the null hypotheses of no
difference in rate of change in illness scores between treatment groups at
the a level of significance if

\-i 2 ^> t ,_ v~~'•k , , * .
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12.2.3 Sample Size Calculation

Since the above tests are based on a standard t test, the sample size per
treatment group required for detection of a clinically meaningful difference,
A, with a desired power of 1 — (3 at the a level of significance is given by

n >
A2

where <r*2 is the sum of the variance components. When the null hypothesis
HQ : Oii = on' is tested,

__
s

rnij 2^i=i li

which can be estimated by

E k v-^rii i ~
»=iEj=i(^j=

When the null hypothesis HO : j3i = /%/ is tested,

^ V

which can be estimated by

2 2 mi
To -f- (T :
P ^-^fc ,9

(To =

12.2.4 An Example

Suppose a sponsor is planning a randomized, parallel-group clinical trial on
mice with multiple sclerosis (MS) for evaluation of a number of doses of an
active compound, an active control, and/or a vehicle control. In practice,
experimental autoimmune encephalomyelitis (EAE) is usually induced in
susceptible animals following a single injection of central nervous system
extract emulsified in the adjutant. The chronic forms of EAE reflect many
of pathophysiologic steps in MS. This similarity has initiated the usage
of EAE models for development of MS therapies. Clinical assessment of
the illness for the induction of EAE in mice that are commonly used is
given in Table 12.2.1. Illness scores of mice are recorded between Day 10
and Day 19 before dosing regardless of the onset or the remission of the
attack. Each mouse will receive a dose from Day 20 to Day 33. The post-
inoculation performance of each mouse is usually assessed up to Day 34.
Sample size calculation was performed using the analysis of variance model
with repeated measures based on the assumptions that
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1. the primary study endpoint is the illness scores of mice;

2. the scientifically meaningful difference in illness score is considered to
be 1.0 or 1.5 (note that changes of 1.0 and 1.5 over the time period
between Day 19 and Day 34 are equivalent to 0.067 and 0.1 changes
in slope of the illness score curve);

3. the standard deviation for each treatment group is assumed to be
same (various standard deviations such as 0.75, 0.80, 0.85, 0.90, 0.95,
1.0, 1.05, 1.1, 1.15, 1.2, or 1.25 are considered);

4. the null hypothesis of interest is that there is no difference in the pro-
file of illness scores, which is characterized between baseline (at dos-
ing) and a specific time point after dosing, among treatment groups;

5. the probability of committing a type II error is 10% or 20%, i.e., the
power is respectively 90%, or 80%;

6. the null hypothesis is tested at the 5% level of significance;

7. Bonferroni adjustment for a significant level for multiple comparisons
were considered.

Under the one-way analysis of variance model with repeated measures, the
formula for the sample size calculation given in the previous subsection can
be used.

Table 12.2.1: Clinical Assessment of Induction of EAE in Mice

Stage 0: Normal
Stage 0.5: Partial limp tail
Stage 1: Complete limp tail
Stage 2: Impaired righting reflex
Stage 2.5: Righting reflex is delayed (Not weak enough to be stage 3)
Stage 3: Partial hind limb paralysis
Stage 3.5: One leg is completely paralyzed, and one leg is partially

paralyzed
Stage 4: Complete hind limb paralysis
Stage 4.5: Legs are completely paralyzed and moribund
Stage 5: Death due to EAE
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Table 12.2.2 provides sample sizes required for three-arm, four-arm, and
five-arm studies with a adjustment for multiple comparisons, respectively.
For example, a sample size of 45 subjects (i.e., 15 subjects per treatment
group) is needed to maintain an 80% power for detection of a decrease in
illness score by A = 1.5 over the active treatment period between treatment
groups when cr*2 is 1.25.

Table 12.2.2: Sample Size Calculation with a Adjustment
for Multiple Comparisons

Sample Size Per Arm

Power

80%

90%

a*
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25

Three
A = 1.0

12
14
16
17
19
21
23
26
28
31
33
16
18
20
22
25
27
30
33
36
39
43

Arms
A = 1.5

6
6
7
8
9
10
11
12
13
14
15
7
8
9
10
11
12
14
15
16
18
19

Four
A = 1.0

14
16
18
20
22
25
27
30
32
35
38
18
20
23
25
28
31
34
38
41
43
48

Arms
A = 1.5

6
7
8
9
10
11
12
13
15
16
17
8
9
10
11
13
14
15
17
18
20
22

Five
A = 1.0

15
17
20
22
24
27
30
33
36
39
42
19
22
25
27
31
34
37
41
45
49
53

Arms
A = 1.5

7
8
9
10
11
12
13
15
16
17
19
9
10
11
12
14
15
17
18
20
22
24
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12.3 Quality of Life

In clinical research, it has been a concern that the treatment of disease
or survival may not be as important as the improvement of quality of life
(QOL), especially for patients with a chronic or life-threatening disease.
Enhancement of life beyond absence of illness to enjoyment of life may
be considered more important than the extension of life. QOL not only
provides information as to how the patients feel about drug therapies, but
also appeals to the physician's desire for the best clinical practice. It can be
used as a predictor of compliance of the patient. In addition, it may be used
to distinguish between therapies that appear to be equally efficacious and
equally safe at the stage of marketing strategy planning. The information
can be potentially used in advertising for the promotion of the drug therapy.
As a result, in addition to the comparison of hazard rates, survival function,
or median survival time, QOL is often assessed in survival trials.

QOL is usually assessed by a questionnaire, which may consists of a
number of questions (items). We refer to such a questionnaire as a QOL
instrument. A QOL instrument is a very subjective tool and is expected to
have a large variation. Thus, it is a concern whether the adopted QOL
instrument can accurately and reliably quantify patients' QOL. In this
chapter, we provide a comprehensive review of the validation of a QOL
instrument, the use of QOL scores, statistical methods for assessment of
QOL, and practical issues that are commonly encountered in clinical tri-
als. For the assessment of QOL, statistical analysis based on subscales,
composite scores, and/or overall score are often performed for an easy in-
terpretation. For example, Tandon (1990) applied a global statistic to com-
bine the results of the univariate analysis of each subscale. Olschewski and
Schumacher (1990), on the other hand, proposed to use composite scores
to reduce the dimensions of QOL. However, due to the complex correla-
tion structure among subscales, optimal statistical properties may not be
obtained. As an alternative, to account for the correlation structure, the
following time series model proposed by Chow and Ki (1994) may be useful.

12.3.1 Time Series Model

For a given subscale (or component), let Xijt be the response of the jth
subject to the ith question (item) at time t, where i = 1,..., k, j = 1, ...,n,
and t = 1, ...,T. Consider the average score over k questions:

1 k

v _ - _ V^Yjt = Xjt = -j- / ,Xjjt-
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Since the average scores yj\,...,yjT are correlated, the following
autoregressive time series model may be an appropriate statistical model
for yjt:

where p, is the overall mean, |^| < 1 is the autoregressive parameter, and
ejt are independent identically distributed random errors with mean 0 and
variance v\. It can be verified that

E(ejty'jt) = 0 for all t' < t.

The autoregressive parameter ^ can be used to assess the correlation of
consecutive responses y^ and yj(t+i)- From the above model, it can be
shown that the autocorrelation of responses with m lag times is •0m, which
is negligible when m is large. Based on the observed average scores on
the jth subject, y^i, ...,yjT? we can estimate the overall mean /j, and the
autoregressive parameter ip. The ordinary least-square estimators of // and
•0 can be approximated by

and

- \r>

which are the sample mean and sample autocorrelation of consecutive ob-
servations. Under the above model, it can be verified that fij is unbiased
and that the variance of fij is given by

T

where 7^0 = Var(yjt). The estimated variance of fij can be obtained by
replacing ijj with $j and 7^0 with

fit. ^2

Suppose that the n subjects are from the same population with the same
variability and autocorrelation. The QOL measurements of these subjects
can be used to estimate the mean average scores p,. An intuitive estimator
of fj, is the sample mean
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Under the time series model, the estimated variance of jj, is given by

where

and

CD = n(T -
»-. \2

J=l

J = l

An approximate (1 — a) 100% confidence interval for /i has limits

'I/.. ±z1_a /2s(y..),

where Zi_Q /2 is the (1 — a/2)th quantile of a standard normal distribution.

Under the time series model, the method of confidence interval approach
described above can be used to assess difference in QOL between treat-
ments. Note that the assumption that all the QOL measurements over
time are independent is a special case of the above model with ijj = 0. In
practice, it is suggested that the above time series model be used to account
for the possible positive correlation between measurements over the time
period under study.

12.3.2 Sample Size Calculation

Under the time series model, Chow and Ki (1996) derived some useful
formulas for determination of sample size based on normal approximation.
For a fixed precision index 1 — a, to ensure a reasonable high power index 6
for detecting a meaningful difference e, the sample size per treatment group
should not be less than

, , ̂  „ Ktor o > 0.5,

where

For a fixed precision index 1 - a, if the acceptable limit for detecting an
equivalence between two treatment means is (—A, A), to ensure a reason-
able high power 0 for detecting an equivalence when the true difference in
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treatment means is less than a small constant r/, the sample size for each
treatment group should be at least

<> /A

If both treatment groups are assumed to have the same variability and
autocorrelation coefficient, the constant c can be simplified as

When n = max(n^,nj), it ensures that the QOL instrument will have
precision index 1 — a and power of no less than 6 and 0 in detecting a
difference and an equivalence, respectively. It, however, should be noted
that the required sample size is proportional to the variability of the aver-
age scores considered. The higher the variability, the larger the sample size
that would be required. Note that the above formulas can also be applied
to many clinical based research studies with time-correlated outcome mea-
surements, e.g., 24-hour monitoring of blood pressure, heart rates, hormone
levels, and body temperature.

12.3.3 An Example

To illustrate the use of the above sample size formulas, consider QOL as-
sessment in two independent groups A and B. Suppose a QOL instrument
containing 11 questions is to be administered to subjects at week 4, 8, 12,
and 16. Denote the mean of QOL score of the subjects in group A and
B by I/a and Ujt, respectively. We assume that yn and Ujt have distribu-
tions that follow the time series model described in the previous section
with common variance 7 = 0.5 sq. unit and have moderate autocorrelation
between scores at consecutive time points, say t/> = 0.5. For a fixed 95%
precision index, 87 subjects per group will provide a 90% power for detec-
tion of a difference of 0.25 unit in means. If the chosen acceptable limits
are (—0.35,0.35), then 108 subjects per group will have a power of 90%
that the 95% confidence interval of difference in group means will correctly
detect an equivalence with rj = 0.1 unit. If sample size is chosen to be 108
per group, it ensures that the power indices for detecting a difference of
0.25 unit or an equivalence are not less than 90%.

12.4 Bridging Studies

In the pharmaceutical industry, the sponsors are often interested in bring-
ing their drug products from one region (e.g., the United States of America)



312 Chapter 12. Sample Size Calculation in Other Areas

to another region (e.g., Asian Pacific) to increase the exclusivity of the drug
products in the marketplace. However, it is a concern whether the clinical
results can be extrapolated from the target patient population in one re-
gion to a similar but different patient population in a new region due to a
possible difference in ethnic factors. The International Conference on Har-
monization (ICH) recommends that a bridging study may be conducted to
extrapolate the clinical results between regions. However, little or no in-
formation regarding the criterion for determining whether a bridging study
is necessary based on the evaluation of the complete clinical data package
is provided by the ICH. Furthermore, no criterion on the assessment of
similarity of clinical results between regions is given. In this section, we
propose the use of a sensitivity index as a possible criterion for regulatory
authorities in the new region to evaluate whether a bridging clinical study
should be conducted and the sample size of such a bridging clinical study.

12.4.1 Sensitivity Index

Suppose that a randomized, parallel-group, placebo-controlled clinical trial
is conducted for evaluation of a test compound as compared to a placebo
control in the original region. The study protocol calls for a total of n
subjects with the disease under study. These n = n\ + n<2 subjects are
randomly assigned to receive either the test compound or a placebo control.
Let Xij be the response observed from the jth subject in the ith treatment
group, where j = 1, . . . ,n^ and i = 1,2. Assume that Xj/s are independent
and normally distributed with means /i^, i = 1,2, and a common variance
a2. Suppose the hypotheses of interest are

HQ : //i — p.2 — 0 versus Ha : IJL\ — 1^2 ^ 0.

Note that the discussion for a one-sided Ha is similar. When a2 is unknown,
we reject HO at the 5% level of significance if

\T\ > tn-2,

where £Q,n-2 is the (1 — a/2)th percentile of a t distribution with n — 2
degrees of freedom, n = n\ + 77-2,

T = ^-^ - , (12.4.1)
'

n-2

and Xi and and s2 are the sample mean and variance, respectively, based
on the data from the ith treatment group. The power of T is given by

P(\T\ > tn_2) = 1 - Tn^(tn-2\e] + Tn_2(-*n-2|0), (12.4.2)
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where

and 7^_2(-|0) denotes the cumulative distribution function of the non-
central t distribution with n — 2 degrees of freedom and the non-centrality
parameter 9.

Let x be the observed data from the first clinical trial and T(x) be the
value of T based on x. Replacing 9 in the power function in (12.4.2) by its
estimate T(x), the estimated power can be obtained as follows

P = p(T(x)) = 1 - Tn_2(£n_2 |T(x)) + Tn_2(-£n_2 |T(x)).

Note that Shao and Chow (2002) refer to P as the reproducibility probabil-
ity for the second clinical trial with the same patient population. However,
a different and more sensible way of defining a reproducibility probability
is to define reproducibility probability as the posterior mean of p(0], i.e.,

P = P(|T(y)| > *n_2|x) = jp(0)7r(0|x)d0,

where y denotes the data set from the second trial and TT(#|X) is the poste-
rior density of #, given x. When the non-informative prior 7r( )Ui , /U2,cr 2 ) =
cr~2 is used, Shao and Chow (2002) showed that

- ) - Tn_2 (-*„_P = ES,U 1 — Tn-2 I tn-
i \ •"/ \

where E$,u is the expectation with respect to 6 and u, u~2 has the gamma
distribution with the shape parameter (n — 2)/2 and the scale parameter
2/(n — 2), and given w, 6 has the normal distribution 7V(T(x),w2).

When the test compound is applied to a similar but different patient
population in the new region, it is expected that the mean and variance of
the response would be different. Chow, Shao, and Hu (2002) proposed the
following concept of sensitivity index for evaluation of the change in patient
population due to ethnic differences. Suppose that in the second clinical
trial conducted in the new region, the population mean difference is changed
to /ii — /^2 + £ and the population variance is changed to C2cr2, where C > 0.
If \IJL\ — [II\ICF is the signal-to-noise ratio for the population difference in the
original region, then the signal-to-noise ratio for the population difference
in the new region is

Ca ~~ a

where
A = 1 + £ / ' - ^ ) (12.4.3)
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is a measure of change in the signal-to-noise ratio for the population dif-
ference, which is the sensitivity index of population differences between
regions. For most practical problems, \£\ < \^i — /^ j and, thus, A > 0.
By (12.4.2), the power for the second trial conducted in the new region is

As indicated by Chow, Shao, and Hu (2002), there are two advantages
of using A as a sensitivity index, instead of £ (changes in mean) and C
(changes in standard deviation). First, the result is easier to interpret
when there is only one index. Second, the reproducibility probability is a
strictly decreasing function of A, whereas an increased population variance
(or a decreased population difference) may or may not result in a decrease
in the reproducibility probability.

If A is known, then the reproducibility probability

PA = p(AT(x))

can be used to assess the probability of generalizability between regions.
For the Bayesian approach, the generalizability probability is

tn-2
M

U

In practice, the value of A is usually unknown. We may either consider a
maximum possible value of |A| or a set of A-values to carry out a sensi-
tivity analysis (see Table 12.4.1). For the Bayesian approach, we may also
consider the average of PA over a prior density 7r(A), i.e.,

P= /PA7r(A)dA.

Table 12.4.1 provides a summary of reproducibility probability PA for
various sample sizes, respectively. For example, a sample size of 30 will give
an 80.5% of reproducibility provided that AT — 2.92.

12.4.2 Assessment of Similarity

Criterion for Similarity

Let x be a clinical response of interest in the original region. Here, x
could be either the response of the primary study endpoint from a test
compound under investigation or the difference of responses of the primary
study endpoint between a test drug and a control (e.g., a standard therapy
or placebo). Let y be similar to x but is a response in a clinical bridging
study conducted in the new region. Using the criterion for assessment of
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Table 12.4.1: Sensitivity Analysis of Reproducibility Probability PA

AT
1.96
2.02
2.08
2.14
2.20
2.26
2.32
2.38
2.44
2.50
2.56
2.62
2.68
2.74
2.80
2.86
2.92
2.98
3.04
3.10
3.16
3.22
3.28
3.34
3.40
3.46
3.52
3.58
3.64
3.70
3.76
3.82
3.88
3.94

10
0.407
0.429
0.448
0.469
0.490
0.511
0.532
0.552
0.573
0.593
0.613
0.632
0.652
0.671
0.690
0.708
0.725
0.742
0.759
0.775
0.790
0.805
0.819
0.832
0.844
0.856
0.868
0.879
0.889
0.898
0.907
0.915
0.923
0.930

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

20
458
481
503
526
549
571
593
615
.636
657
.678
.698
.717
.736
.754
.772
.789
.805
.820
.834
.848
.861
.873
.884
.895
.905
.914
.923
.931
.938
.944
950
.956
.961

30
0.473
0.496
0.519
0.542
0.565
0.588
0.610
0.632
0.654
0.675
0.695
0.715
0.735
0.753
0.771
0.788
0.805
0.820
0.835
0.849
0.862
0.874
0.886
0.897
0.907
0.916
0.925
0.933
0.940
0.946
0.952
0.958
0.963
0.967

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

n
40
480
504
527
550
573
596
618
640
662
683
704
724
743
761
779
796
.812
.827
.842
.856
.868
.881
.892
.902
.912
.921
.929
.937
.944
.950
.956
.961
966
.970

50
0.484
0.508
0.531
0.555
0.578
0.601
0.623
0.645
0.667
0.688
0.708
0.728
0.747
0.766
0.783
0.800
0.816
0.831
0.846
0.859
0.872
0.884
0.895
0.905
0.915
0.924
0.932
0.939
0.946
0.952
0.958
0.963
0.967
0.971

60
0.487
0.511
0.534
0.557
0.581
0.604
0.626
0.648
0.670
0.691
0.711
0.731
0.750
0.769
0.786
0.803
0.819
0.834
0.848
0.862
0.874
0.886
0.897
0.907
0.917
0.925
0.933
0.941
0.947
0.953
0.959
0.964
0.968
0.972

100
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

492
516
540
563
586
609
632
654
676
697
717
737
756
774
792
808
824
839
853
866
879
890
901
911
920
929
936
943
950
956
961
966
970
974

oo
0.500
0.524
0.548
0.571
0.594
0.618
0.640
0.662
0.684
0.705
0.725
0.745
0.764
0.782
0.799
0.815
0.830
0.845
0.860
0.872
0.884
0.895
0.906
0.916
0.925
0.932
0.940
0.947
0.953
0.959
0.965
0.969
0.973
0.977
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population and individual bioequivalence (FDA, 2001), Chow, Shao, and
Hu (2002) proposed the following measure of similarity between x and y:

- E(x - x'}2
( j-, (12.4.4)

E(x-x')2/2

where x' is an independent replicate of x and y, x, and x' are assumed to
be independent. Note that 6 in (12.4.4) assesses not only the difference
between the population means E(x) and E(y) but also the population vari-
ation of x and y through a function of mean squared differences. Also, 9
is a relative measure, i.e., the mean squared difference between x and y is
compared with the mean squared difference between x and x'. It is related
to the so-called population difference ratio (PDR), i.e.,

where

In assessing population bioequivalence (or individual bioequivalence),
the similarity measure 9 is compared with a population bioequivalence (or
individual bioequivalence) limit 9u set by the FDA. For example, with log-
transformed responses, FDA (2001) suggests

(logl.25)2 + e

where crfi > 0 and e > 0 are two constants given in the FDA guidance which
depend upon the variability of the drug product.

Since a small value of 9 indicates that the difference between x and y is
small (relative to the difference between x and x'), similarity between the
new region and the original region can be claimed if and only if 9 < 9u,
where 9u is a similarity limit. Thus, the problem of assessing similarity
becomes a hypothesis testing problem with hypotheses

H0:0> Ou versus Ha : 9 < Qv. (12.4.5)

Let k = 0 indicate the original region and k = 1 indicate the new
region. Suppose that there are rafc study centers and n^ responses in each
center for a given variable of interest. Here, we first consider the balanced
case where centers in a given region have the same number of observations.
Let Zijk be the ith observation from the jth center of region fc, bjk be the
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between-center random effect, and eijk be the within-center measurement
error. Assume that

%ijk ~~ P'k ~T~ vjk <~ &ijk-> ^ ~ • ! • » • • • > ^fc J == -M • • • ? ^-fc; / C = = U , 1 , ^12.4.t)J

where //^ is the population mean in region fc, bjk ~ JV^a2^), e^-fc ~
TV^er2^), and 6jfc's and e^-fe's are independent. Under model (12.4.6),
the parameter # in (12.4.4) becomes

/ \ 2 , 2 2
/) lA^O ~ /^l j + ^n ~ ^j-Q
t/ — 2 »

<7TO

where a\k = o"^ + cr2^;., is the total variance (between center variance
plus within center variance) in region k. The hypotheses in (12.4.5) are
equivalent to

HQ : C > 0 versus Ha : ( < 0, (12.4.7)

where

C = vA*o — A*i) ~l~ &TI — (1 "^~ ^t/)<^TO- (12.4.8)

Statistical Methods

A statistical test of significance level 5% can be obtained by using a 95%
upper confidence bound (,u for C in (12.4.8), i.e., we reject HQ in (12.4.7) if
and only if (u < 0.

Under model (12.4.6), an unbiased estimator of the population mean in
region k is

where Nk = mk^k and Zk is the average of Zij^s over j and i for a fixed
k. To construct a 95% upper confidence bound for C in (12.4.8) using
the approach in Hyslop, Hsuan, and Holder (2000), which is proposed for
testing individual bioequivalence, we need to find independent, unbiased,
and chi-square distributed estimators of cr^k, k = 0,1. These estimators,
however, are not available when n^ > 1. Note that

2 0 1 0 * 1 \ o
,. — .-.& | r\~ rr I ("\ «~M/r^ L< — O 1 •
°Tk — aBk +nk aWk + (L~nk )aWki AC — U, 1,

aBfc + nk1(7Wk can ^>e unbiasedly estimated by

1 mfc /" 2 _i_ —1 2 \ 2

rrik - I
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where Zjk is the average of z^^s over i and xf denotes a random variable
having the chi-square distribution with I degrees of freedom; (T^k can

estimated by

Nk-mk

and Zfc, s^A," SH/J., fc = 0, 1, are independent. Thus, an approximate 95%
upper confidence bound for C in (12.4.8) is

Ct/ = (20 - ^i)2 + 4i + (i - ^r1)5^!
- (1 + 0£/)[40 + (1 - n^ ̂ S^Q

where U is the sum of the following five quantities:

\ZQ — zi\ + 1.645 = \2

4 / mx - 1
SB1 ^ 2 L

\ A0.05;mi-l

JVi - mi
~2

^ AO.OSjATi-wi

m.0 - 1 _

Xo.95;m0-l

-i

and ^^.; is the 100a% percentile of the chi-square distribution with / degrees
of freedom.

Thus, the null hypothesis H0 in (12.4.7) can be rejected at approxi-
mately 5% significance level if £u < 0. Similar to population bioequivalence
testing (FDA, 2001), we conclude that the similarity between two regions
(in terms of the given variable of interest) if and only if H0 in (12.4.7) is
rejected and the observed mean difference ZQ — z\ is within the limits of
±0.233.

Consider now the situation where centers contain different numbers of
observations in a given region, i.e., the jth center in region k contains Ujk
observations. We have the following recommendations.
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If all njfc's are large, then the previous described procedure is still
approximately valid, provided that Nk is defined to be nifc + - • •+nmkk
and n — TJ,7 Vsr.n is renlared bv

1. If all
appn
and (1 — nk

1}swk 1S replaced by

,2

If rijfc are not very different (e.g., unequal sample sizes among centers
are caused by missing values due to reasons that are not related to
the variable of interest), then we may apply the Satterthwaite method
(Johnson and Kotz, 1972) as follows. First, replace s^/fc with s^k.
Second, replace n^ with

1
"Ofc

Third, replace s2
Bk with

~ \2

(mk -

Then, approximately,

~2

with

d = (mk - iKlfc1 +nofc)2

(fa l + nofc)
2 + vk

where
~2 i

n, - Bk
Pk — ^0swk nofc

and

1

mk -

mfc mfc .. / mfc .
^ -\ 2 ^fc V ^ 3 -L / V—^ 2 1 2

2^ n^ ~ jVfc 2^ njfc + jv2" I ̂  njfc I ~ n°fc
j=l j=l k YJ=I

Finally, replace mfc — 1 with
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Sample Size Calculation

Chow, Shao, and Hu (2002) proposed a procedure for determination of
sample sizes mi and n\ in the new region to achieve a desired power for
establishment similarity between regions. The procedure is briefly outlined
below. We first assume that sample sizes mo and no in the original region
have already been determined. Let ip — (/^o — I^I^^I^'BO^WI^WO) ^e

the vector of unknown parameters and let U be given in the definition of
£t/ and Up be the same as U but with 5% and 95% replaced by 1 — (3 and
/3, respectively, where /3 is a given desired power of the similarity test. Let
U arid U/3 be U and £7/3, respectively, with (ZQ — Zk,s2

BT,s2
BR,SwTis\VR)

replaced by ij), an initial guessing value for which the value of £ (denoted
by £) is negative. Then, the sample sizes mi and HI should be chosen so
that

C + V ^ + y ^ ^ O (12.4.9)

holds. We may start with some initial values of mi and n\ and gradually
increase them until (12.4.9) holds. Table 12.4.2 gives sample sizes with
various parameters of //o, Mi , ^BI? ^eo' aw\-> an<^ awo-

12.4.3 Remarks

In the assessment of sensitivity, regulatory guidance/requirement for de-
termining whether a clinical bridging study is critical as to (i) whether a
bridging study is recommended for providing substantial evidence in the
new region based on the clinical results observed in the original region, and
(ii) what sample size of the clinical bridging study is needed for extrapolat-
ing the clinical results to the new region with desired reproducibility prob-
ability. It is suggested the therapeutic window and intra-subject variability
of the test compound must be taken into consideration when choosing the
criterion and setting regulatory requirements. A study of historical data
related to the test compound is strongly recommended before a regulatory
requirement is implemented.

The criterion for assessment of similarity proposed by Chow, Shao, and
Hu (2002) accounts for the average and variability of the response of the
primary study endpoint. This aggregated criterion, however, suffers the
following disadvantages: (i) the effects of individual components cannot be
separated and (ii) the difference in averages may be offset by the reduction
in variability (Chow, 1999). As a result, it is suggested that an additional
constraint be placed on the difference in means between two regions (FDA,
2001). An alternative to this aggregated criterion is to consider a set of
disaggregate criteria on average and variability of the primary study end-
point (Chow and Liu, 2000). This approach, however, is not favored by the
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regulatory agency due to some practical considerations. For example, we
will never be able to claim the new region is similar to the original region if
the variability of the response of the primary endpoint is significantly lower
than that in the original region.

The FDA recommends the use of PDR for selection of 6jj. In practice,
the determination of the maximum allowable PDR should depend upon the
therapeutic window and intra-subject variability to reflect the variability
from drug product to drug product and from patient population to patient
population.

12.5 Vaccine Clinical Trials

Similar to clinical development of drug products, there are four phases of
clinical trials in vaccine development. Phase I trials are referred to early
studies with human subjects. The purpose of phase I trials is to explore
the safety and immunogenicity of multiple dose levels of the vaccine under
investigation. Phase I trials are usually on small scales. Phase II trials
are to assess the safety, immunogenicity, and early efficacy of selected dose
levels of the vaccine. Phase III trials, which are usually large in scale, are to
confirm the efficacy of the vaccine in the target population. Phase III trials
are usually conducted for collecting additional information regarding long-
term safety, immuogenicity, or efficacy of the vaccine to fulfill regulatory
requirements and/or marketing objectives after regulatory approval of the
vaccine.

12.5.1 Reduction in Disease Incidence

As indicated in Chan, Wang, and Heyse (2003), one of the most critical
steps of evaluation of a new vaccine is to assess the protective efficacy of
the vaccine against the target disease. An efficacy trial is often conducted
to evaluate whether the vaccine can prevent the disease or reduce the inci-
dence of the disease in the target population. For this purpose, prospective,
randomized, placebo-controlled trials are usually conducted. Subjects who
meet the inclusion/exclusion criteria are randomly assigned to receive ei-
ther the test vaccine (T) or placebo control (C). Let PT and pc be the true
disease incidence rates of the UT vaccines and nc controls randomized in
the trial, respectively. Thus, the relative reduction in disease incidence for
subjects in the vaccine group as compared to the control groups is given by

PC PC
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In most vaccine clinical trials, TT has been widely used and is accepted as a
primary measure of vaccine efficacy. Note that a vaccine is considered 100%
efficacious (i.e., TT — 1) if it prevents the disease completely (i.e., PT = 0).
On the other hand, it has no efficacy (i.e., TT = 0) if PT — Pc- Let XT and
xc be the number of observed diseases for treatment and control groups,
respectively. It follows that the natural estimators for PT and pc are given
by

XT , , xcPT = — and pc = — •
nT nc

Let (3 — PT/PC, which can be estimated by

By Taylor's expansion and the Central Limit Theorem (CLT), fl is asymp-
totically distributed as a normal random variable with mean (3 and variance
given by

„' = 1Z£I + 1-^P£. (12.5.1)
HTPT ncpc

For a given confidence level of 1 — a, a (1 — a) confidence interval of /3 is
given by

where a is obtained according to (12.5.1) by replacing PT and pc by PT
and pci respectively. In practice, sample size is usually determined by
specifying the half length (d) of the confidence interval of (3. Assuming
that n — HT = nc, it follows that

npr npc

This leads to
_ fs. (l ~PT . l~Pc\

d2 \ PT PC )

An Example

An investigator is interested in obtaining a 95% confidence interval for
TT where it is expected that PT — 0.01 and pc = 0.02. It is desirable to have
a confidence interval in log-scale with half length of 0.20 (d = 0.20). The
sample size needed is then given by

1.96\2 /1-0.01 1-0.02
0.2 I \ 0.01 0.02

. 9
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12.5.2 The Evaluation of Vaccine Efficacy with Ex-
tremely Low Disease Incidence

In many cases, the disease incidence rate is extremely low. In this case,
a much larger scale of study is required to demonstrate vaccine efficacy
as described in the previous subsection. For sufficiently large sample sizes
and small incidence rates, the numbers of cases in the vaccine groups and
the control groups approximately have the Poisson distribution with rate
parameters AT(~ riTpr] and AC(~ ncPc]-, respectively. As a result, the
number of cases in the vaccine group given the total number of cases (de-
noted by S) is distributed as a binomial random variable with parameter
9, i.e., b(S,9), where

_ AT _ UTPT _ R _ 1 - T
AC + AT UTPT + ncPc R + u I - T T + W

and u — nc/nT- Since 9 is a decreasing function in TT, testing hypotheses
that

HQ : TT < TtQ versus Ha : TT > TTQ

is equivalent to testing the following hypotheses:

H0:9>90 versus Ha : 9 < 00,

where

1 — 7I"0 + U

Let XT and xc be the number of the observed diseases for the treatment and
control, respectively. A natural estimator for 9 is given by 9 = XT/(XT +
xc}- The test statistic is given by

Under the null hypothesis, T is asymptotically distributed as a standard
normal random variable. Hence, we reject the null hypothesis at a level of
significance if T > za. Under the alternative hypothesis, the power of the
above test can be approximated by

In order to achieve a desired power 1 — /?, the total number of diseases
needed can be obtained by solving

z<x v ^o(l — "o) ~t~ \&o — 9)
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This leads to

Under the assumption that n — HT — nc, it follows that

An Example

Suppose the investigator is interested in conducting a two-arm parallel trial
with equal sample size (u = 1) to compare a study vaccine with a control
in terms of controlling the disease rates. It is expected that the disease rate
for the treatment group is 0.001 and the disease rate for the control group
is 0.002. The hypotheses of interest are given by

HQ : 9 < 0.5 versus Ha : 9 > 0.5.

Hence, OQ = 0.5. It can be obtained that

0.001 _ 1.
~ 0.001 + 0.002 ~ 3'

As a result, the sample size needed in order to achieve an 80% ((3 = 0.20)
power at the 5% (a — 0.05) level of significance is given by

= [1.96y/0.5(l - 0.5) + 0.84^1/3(1 - 1/3)]2 ^
(0.001+ 0.002)(l/3-1/2)2

Thus, 22720 subjects per arm is needed in order to detect such a difference
with an 80% power.

12.5.3 Relative Vaccine Efficacy

In vaccine trials, when the control is a licensed vaccine (an active control),
the relative efficacy n can be evaluated through the relative risk (i.e., R =
PT/PC) based on the relationship TT — 1 — R. If the absolute efficacy of
the control (i.e., TTC) has been established, one can estimate the absolute
efficacy of the test vaccine by

7TT = 1 — -R(l — 7TC1)-

For a comparative vaccine trial, it is often designed as a non-inferiority trial
by testing the following hypotheses:

HQ : R> R0 versus Ha : R < RQ,
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where RQ > 1 is a pre-specified non-inferiority margin or a threshold for
relative risk. In practice, the hypotheses regarding relative risk are most
often performed based on log-scale. In other words, instead of testing the
above hypotheses, we usually consider the following hypotheses:

Ho : log(R) > log(R0) versus Ha : log(R) < log(R0).

As it can be seen, this becomes the two-sample problem for relative risk,
which has been discussed in Section 4.6. Hence, detailed discussion is omit-
ted.

12.5.4 Composite Efficacy Measure

As indicated by Chang et al. (1994), in addition to the prevention of the
disease infection, a test vaccine may also reduce the severity of the target
disease as well. As a result, it is suggested that a composite efficacy measure
be considered to account for both incidence and severity of the disease when
evaluating the efficacy of the test vaccine. Chang et al. (1994) proposed
the so-called burden-of-illness composite efficacy measure.

Suppose UT subjects were assigned to receive treatment while nc sub-
jects were assigned to receive control (placebo). Let XT and xc be the
number of cases observed in treatment and control group, respectively.
Without loss of generality, we assume the first XT subjects in the treat-
ment group and xc subjects in the control group experienced the events.
Let S i j , i = T,C;j = l,...,Xi be the severity score associated with the j'th
case in the ith treatment group. For a fixed i = T or C, it is assumed
that Sij are independent and identically distributed random variables with
mean Hi and variance of. Let pi be the true event rate of the zth treatment
group. The hypotheses of interest is given by

HQ ' PT — PC and HT — He versus Ha : PT ^ PC or HT ^ He •

Let

_. = _Iy\..
HI 4^ IJ'

X = —
+

l 3=1

The test statistic is given by

ST - scT =
- p)(l/nT
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Under the null hypothesis, Chang et al. (1994) showed that T is asymptot-
ically distributed as a standard normal random variable. Hence, we would
reject the null hypothesis if |T| > za/2- Assume that n = HT = nc and
under the alternative hypothesis, it can be shown that

x ->a.s. Or + A*c)/2 = M*

P -»a.s. (pr+Pc)/2=p*.

Without loss of generality, we assume PT^T > Pc/J-c under the alternative
hypothesis. Thus, the power of the above test can be approximated by

_ - P*)) + IP*(OT + ac) ~ (VTPT - VRPR) \
- PR}) ) '

Hence, the sample size needed in order to achieve a desired power of 1 — /3
can be obtained by solving

\/PT(OT + /4(! ~ PT)) + PR(VR + A^(l - PR))

This leads to

1

It should be noted that the above formula is slightly different from the one
derived by Chang et al. (1994), which is incorrect.

An Example

Consider a clinical trial with HT = 0.20, fic = 0.30, pT = 0.10, pR = 0.20
and a\ — a^ = 0.15. The sample size needed in order to have an 80%
(/3 — 0.20) power for detecting such a difference at the 5% (a — 0.05) level
of significance is given by

-77 [l.96\/2x0.252x0.15x0.85 + 2x0.15x0.3
(0.2x0.1-0.3x0.2)2 L

+ 0.84^0.1(0.152 + 0.2 x 0.9) + 0.2(0.152 + 0.3 x 0.8)

w 527.

As a result, 527 subjects per treatment group are required for achieving an
80% power for detecting such a difference in the burden-of-illness score.
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12.5.5 Remarks

In the previous subsections, procedures for sample size calculation in vac-
cine clinical trials were discussed based on a primary efficacy study end-
point using parametric approach. Durham et al. (1998) considered a non-
parametric survival method to estimate the long-term efficacy of a cholera
vaccine in the presence of warning protection. For evaluation of long-term
vaccine efficacy, as indicated by Chan, Wang, and Heyse (2003), the analysis
of time-to-event may be useful for determining whether breakthrough rates
among vaccines change over time. However, it should be noted that sample
size calculation may be different depending upon the study objectives, the
hypotheses of interest, and the corresponding appropriate statistical tests.

Clinical development for vaccine has recently received much attention
both from regulatory agencies such as the US. FDA and the pharmaceu-
tical industry. For example, Ellenberg and Dixon (1994) discussed some
important statistical issues of vaccine trials (related to HIV vaccine trials).
O'Neill (1988) and Chan and Bohida (1998) gave asymptotic and exact
formulas for sample size and power calculations for vaccine efficacy stud-
ies, respectively. Chan, Wang, and Heyse (2003) provided a comprehensive
review of vaccine clinical trials and statistical issues that are commonly
encountered in vaccine clinical trials.





Appendix: Tables of
Quantiles

Upper Quantiles of the Central t Distribution
a

df 0.100 0.050 0.025 0.010 0.005
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

3.0777

1.8856

1.6377
1.5332

1.4759

1.4398

1.4149

1.3968

1.3830

1.3722

1.3634

1.3562

1.3502

1.3450

1.3406

1.3368

1.3334

1.3304

1.3277

1.3253

1.3232
1.3212

1.3195

1.3178

1.3163
1.3150

1.3137

1.3125

1.3114

1.3104

6.3138

2.9200
2.3534

2.1318

2.0150

1.9432

1.8946

1.8595

1.8331

1.8125

1.7959

1.7823

1.7709

1.7613

1.7531

1.7459

1.7396

1.7341

1.7291

1.7247

1.7207
1.7171

1.7139

1.7109

1.7081

1.7056

1.7033

1.7011

1.6991

1.6973

12.7062

4.3027
3.1824

2.7764

2.5706

2.4469

2.3646

2.3060

2.2622

2.2281

2.2010

2.1788

2.1604

2.1448

2.1314

2.1199

2.1098

2.1009

2.0930

2.0860

2.0796

2.0739

2.0687

2.0639

2.0595

2.0555

2.0518

2.0484

2.0452

2.0423

31.8205

6.9646
4.5407

3.7470

3.3649

3.1427

2.9980

2.8965

2.8214

2.7638

2.7181

2.6810

2.6503

2.6245

2.6025

2.5835

2.5669
2.5524

2.5395

2.5280

2.5176

2.5083

2.4999

2.4922

2.4851

2.4786

2.4727

2.4671

2.4620

2.4573

63.6567

9.9248

5.8409
4.6041

4.0322

3.7074

3.4995

3.3554

3.2498

3.1693

3.1058

3.0545

3.0123

2.9768

2.9467

2.9208

2.8982

2.8784

2.8609

2.8453
2.8314

2.8188

2.8073

2.7969

2.7874

2.7787

2.7707

2.7633
2.7564

2.7500

329
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Upper Quantiles of the \2 Distribution

df
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.100

2.7055

4.6052

6.2514

7.7794

9.2364

10.6446

12.0170

13.3616

14.6837

15.9872

17.2750

18.5493

19.8119

21.0641

22.3071

23.5418
24.7690

25.9894

27.2036

28.4120

29.6151

30.8133

32.0069

33.1962

34.3816

35.5632

36.7412

37.9159
39.0875

40.2.560

0.050

3.8415

5.9915

7.8147

9.4877

11.0705

12.5916

14.0671

15.5073

16.9190

18.3070

19.6751

21.0261

22.3620

23.6848

24.9958

26.2962
27.5871

28.8693

30.1435

31.4104

32.6706

33.9244

35.1725

36.4150

37.6525
38.8851

40.1133

41.3371

42.5570

43.7730

a
0.025

5.0239

7.3778

9.3484

11.1433

12.8325
14.4494

16.0128

17.5345

19.0228

20.4832

21.9200

23.3367

24.7356

26.1189

27.4884

28.8454

30.1910

31.5264

32.8523

34.1696

35.4789

36.7807

38.0756

39.3641

40.6465

41.9232

43.1945

44.4608

45.7223
46.9792

0.010

6.6349

9.2103

11.3449

13.2767

15.0863

16.8119

18.4753

20.0902

21.6660

23.2093

24.7250

26.2170

27.6882

29.1412

30.5779

31.9999

33.4087
34.8053

36.1909

37.5662

38.9322

40.2894

41.6384

42.9798

44.3141
45.6417

46.9629

48.2782

49.5879
50.8922

0.005

7.8794

10.5966

12.8382

14.8603
16.7496

18.5476

20.2777

21.9550

23.5894

25.1882

26.7568

28.2995

29.8195

31.3193

32.8013
34.2672

35.7185

37.1565

38.5823

39.9968

41.4011

42.7957

44.1813

45.5585

46.9279

48.2899

49.6449

50.9934

52.3356

53.6720
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Upper Quantiles of the F Distribution (a = 0.100)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
8.5263

5.5383

4.5448

4.0604

3.7759

3.5894

3.4579

3.3603

3.2850

3.2252

3.1765

3.1362

3.1022

3.0732

3.0481

3.0262

3.0070

2.9899

2.9747

2.9610

2.9486

2.9374

2.9271

2.9177

2.9091

2.9012

2.8938

2.8870
2.8807

2
9.0000

5.4624

4.3246

3.7797

3.4633

3.2574

3.1131

3.0065

2.9245

2.8595

2.8068
2.7632

2.7265

2.6952

2.6682

2.6446
2.6239

2.6056

2.5893

2.5746

2.5613

2.5493

2.5383

2.5283

2.5191

2.5106

2.5028

2.4955
2.4887

3
9.1618

5.3908

4.1909

3.6195

3.2888

3.0741

2.9238

2.8129

2.7277

2.6602

2.6055

2.5603

2.5222

2.4898

2.4618

2.4374

2.4160

2.3970

2.3801

2.3649

2.3512

2.3387

2.3274

2.3170

2.3075

2.2987

2.2906

2.2831
2.2761

4
9.2434

5.3426

4.1072

3.5202

3.1808

2.9605

2.8064

2.6927

2.6053

2.5362

2.4801

2.4337

2.3947

2.3614

2.3327

2.3077

2.2858

2.2663

2.2489

2.2333

2.2193

2.2065

2.1949

2.1842

2.1745

2.1655

2.1571

2.1494

2.1422

5
9.2926

5.3092

4.0506

3.4530

3.1075

2.8833

2.7264

2.6106

2.5216

2.4512

2.3940

2.3467

2.3069

2.2730

2.2438

2.2183

2.1958

2.1760

2.1582

2.1423

2.1279

2.1149

2.1030

2.0922

2.0822

2.0730

2.0645

2.0566
2.0492

6
9.3255

5.2847

4.0097

3.4045

3.0546

2.8274

2.6683

2.5509

2.4606

2.3891
2.3310

2.2830

2.2426

2.2081

2.1783

2.1524

2.1296

2.1094

2.0913

2.0751

2.0605

2.0472

2.0351

2.0241

2.0139

2.0045

1.9959

1.9878
1.9803

7
9.3491

5.2662

3.9790

3.3679

3.0145

2.7849

2.6241

2.5053

2.4140

2.3416

2.2828
2.2341

2.1931

2.1582

2.1280

2.1017

2.0785

2.0580

2.0397

2.0233

2.0084

1.9949

1.9826

1.9714

1.9610

1.9515

1.9427

1.9345
1.9269

8
9.3668

5.2517

3.9549

3.3393

2.9830

2.7516

2.5893

2.4694

2.3772

2.3040
2.2446

2.1953

2.1539

2.1185

2.0880

2.0613

2.0379

2.0171

1.9985

1.9819

1.9668

1.9531

1.9407

1.9292

1.9188

1.9091

1.9001

1.8918
1.8841
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Upper Quantiles of the F Distribution (a = 0.100)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9
9.3805

5.2400

3.9357

3.3163

2.9577

2.7247

2.5612

2.4403
2.3473

2.2735

2.2135

2.1638
2.1220

2.0862

2.0553

2.0284

2.0047

1,9836

1.9649

1.9480

1.9327

1.9189

1.9063

1.8947
1.8841

1.8743

1.8652

1.8568

1.8490

10
9.3916

5.2304

3.9199

3.2974

2.9369

2.7025

2.5380

2.4163
2.3226

2.2482

2.1878

2.1376

2.0954

2.0593

2.0281

2.0009
1.9770

1.9557

1.9367

1.9197

1.9043

1.8903

1.8775

1.8658
1.8550
1.8451

1.8359

1.8274

1.8195

11
9.4006

5.2224

3.9067

3.2816

2.9195

2.6839

2.5186

2.3961

2.3018

2.2269

2.1660

2.1155

2.0729

2.0366

2.0051

1.9777

1.9535

1.9321

1.9129

1.8956

1.8801

1.8659

1.8530

1.8412

1.8303
1.8203

1.8110

1.8024

1.7944

12
9.4081

5.2156

3.8955

3.2682

2.9047

2.6681

2.5020

2.3789

2.2841

2.2087

2.1474

2.0966

2.0537

2.0171

1.9854

1.9577

1.9333

1.9117

1.8924

1.8750

1.8593

1.8450

1.8319

1.8200

1.8090
1.7989

1.7895

1.7808

1.7727

16
9.4289

5.1964

3.8639

3.2303

2.8626

2.6230

2.4545

2.3295

2.2330

2.1563

2.0938

2.0419

1.9981

1.9605

1.9281

1.8997

1.8747

1.8524

1.8325

1.8146

1.7984

1.7837

1.7703

1.7579

1.7466
1.7361
1.7264

1.7174

1.7090

20
9.4413

5.1845

3.8443

3.2067

2.8363

2.5947

2.4246

2.2983
2.2007

2.1230

2.0597

2.0070

1.9625

1.9243

1.8913

1.8624

1.8368
1.8142

1.7938

1.7756

1.7590

1.7439

1.7302

1.7175

1.7059
1.6951

1.6852

1.6759

1.6673

25
9.4513

5.1747

3.8283

3.1873

2.8147

2.5714

2.3999

2.2725

2.1739

2.0953

2.0312

1.9778

1.9326

1.8939

1.8603

1.8309

1.8049

1.7818

1.7611

1.7424

1.7255

1.7101

1.6960

1.6831

1.6712
1.6602

1.6500

1.6405

1.6316

30
9.4579

5.1681

3.8174

3.1741

2.8000

2.5555

2.3830

2.2547

2.1554

2.0762

2.0115

1.9576

1.9119

1.8728

1.8388

1.8090

1.7827

1.7592

1.7382

1.7193
1.7021

1.6864

1.6721

1.6589

1.6468
1.6356

1.6252

1.6155

1.6065
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Upper Quantiles of the F Distribution (a = 0.050)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
18.5128

10.1280

7.7086
6.6079

5.9874

5.5914

5.3177

5.1174

4.9646

4.8443

4.7472

4.6672

4.6001

4.5431

4.4940

4.4513

4.4139

4.3807

4.3512

4.3248

4.3009

4.2793

4.2597

4.2417

4.2252

4.2100

4.1960

4.1830

4.1709

2
19.0000

9.5521
6.9443

5.7861

5.1433

4.7374

4.4590

4.2565
4.1028

3.9823

3.8853
3.8056

3.7389

3.6823

3.6337

3.5915
3.5546

3.5219

3.4928

3.4668

3.4434

3.4221

3.4028

3.3852

3.3690

3.3541

3.3404

3.3277

3.3158

3
19.1643

9.2766

6.5914

5.4095

4.7571

4.3468

4.0662

3.8625
3.7083

3.5874

3.4903

3.4105

3.3439

3.2874

3.2389

3.1968

3.1599

3.1274

3.0984

3.0725
3.0491

3.0280

3.0088

2.9912

2.9752

2.9604

2.9467

2.9340

2.9223

4
19.2468

9.1172

6.3882
5.1922

4.5337

4.1203

3.8379
3.6331
3.4780

3.3567

3.2592

3.1791

3.1122

3.0556

3.0069

2.9647

2.9277

2.8951

2.8661

2.8401

2.8167

2.7955

2.7763

2.7587

2.7426

2.7278

2.7141

2.7014

2.6896

5
19.2964

9.0135

6.2561

5.0503

4.3874

3.9715

3.6875
3.4817

3.3258

3.2039

3.1059
3.0254

2.9582

2.9013

2.8524

2.8100

2.7729

2.7401

2.7109

2.6848

2.6613

2.6400

2.6207

2.6030

2.5868

2.5719

2.5581
2.5454

2.5336

6
19.3295

8.9406

6.1631

4.9503

4.2839

3.8660

3.5806

3.3738
3.2172

3.0946

2.9961

2.9153

2.8477

2.7905

2.7413

2.6987

2.6613

2.6283

2.5990

2.5727

2.5491

2.5277

2.5082

2.4904

2.4741

2.4591

2.4453

2.4324

2.4205

7
19.3532

8.8867

6.0942

4.8759

4.2067

3.7870

3.5005
3.2927

3.1355

3.0123

2.9134

2.8321

2.7642

2.7066

2.6572

2.6143

2.5767

2.5435

2.5140

2.4876

2.4638

2.4422

2.4226

2.4047

2.3883

2.3732

2.3593

2.3463

2.3343

8
19.3710

8.8452

6.0410

4.8183

4.1468

3.7257

3.4381

3.2296
3.0717

2.9480

2.8486

2.7669

2.6987

2.6408

2.5911

2.5480

2.5102

2.4768

2.4471

2.4205
2.3965

2.3748

2.3551

2.3371

2.3205

2.3053

2.2913

2.2783
2.2662
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Upper Quantiles of the F Distribution (a = 0.050)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9
19.3848

8.8123

5.9988

4.7725

4.0990

3.6767

3.3881

3.1789

3.0204

2.8962

2.7964

2.7144

2.6458

2.5876

2.5377

2.4943

2.4563

2.4227

2.3928
2.3660

2.3419

2.3201

2.3002

2.2821

2.2655

2.2501

2.2360

2.2229

2.2107

10
19.3959
8.7855
5.9644

4.7351

4.0600

3.6365
3.3472

3.1373

2.9782

2.8536

2.7534

2.6710

2.6022

2.5437

2.4935

2.4499

2.4117

2.3779
2.3479

2.3210

2.2967

2.2747

2.2547

2.2365

2.2197

2.2043

2.1900

2.1768

2.1646

11
19.4050

8.7633
5.9358

4.7040

4.0274

3.6030

3.3130

3.1025

2.9430

2.8179

2.7173

2.6347

2.5655

2.5068

2.4564

2.4126

2.3742

2.3402

2.3100
2.2829

2.2585

2.2364

2.2163

2.1979
2.1811

2.1655

2.1512

2.1379

2.1256

12
19.4125

8.7446

5.9117

4.6777

3.9999

3.5747

3.2839
3.0729

2.9130

2.7876

2.6866

2.6037

2.5342

2.4753

2.4247

2.3807
2.3421

2.3080

2.2776
2.2504

2.2258

2.2036

2.1834

2.1649

2.1479

2.1323

2.1179

2.1045

2.0921

16
19.4333

8.6923
5.8441

4.6038

3.9223

3.4944

3.2016

2.9890

2.8276

2.7009

2.5989

2.5149

2.4446

2.3849

2.3335

2.2888

2.2496

2.2149

2.1840
2.1563

2.1313

2.1086

2.0880

2.0691
2.0518

2.0358

2.0210

2.0073

1.9946

20
19.4458

8.6602

5.8025

4.5581

3.8742

3.4445

3.1503

2.9365

2.7740

2.6464

2.5436

2.4589

2.3879

2.3275
2.2756

2.2304

2.1906

2.1555

2.1242

2.0960

2.0707

2.0476

2.0267

2.0075

1.9898

1.9736

1.9586

1.9446

1.9317

25
19.4558

8.6341

5.7687

4.5209

3.8348

3.4036

3.1081

2.8932

2.7298

2.6014

2.4977

2.4123

2.3407

2.2797

2.2272

2.1815

2.1413

2.1057

2.0739

2.0454

2.0196

1.9963

1.9750

1.9554

1.9375

1.9210

1.9057

1.8915

1.8782

30
19.4624

8.6166

5.7459

4.4957

3.8082

3.3758

3.0794

2.8637

2.6996

2.5705

2.4663

2.3803

2.3082

2.2468

2.1938

2.1477

2.1071

2.0712

2.0391
2.0102

1.9842

1.9605

1.9390

1.9192

1.9010

1.8842

1.8687

1.8543

1.8409
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Upper Quantiles of the F Distribution (a = 0.025)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
38.5063
17.4434
12.2179
10.0070
8.8131
8.0727
7.5709
7.2093
6.9367
6.7241
6.5538
6.4143
6.2979
6.1995
6.1151
6.0420
5.9781
5.9216
5.8715
5.8266
5.7863
5.7498
5.7166
5.6864
5.6586
5.6331
5.6096
5.5878
5.5675

2
39.0000
16.0441
10.6491
8.4336
7.2599
6.5415
6.0595
5.7147
5.4564
5.2559
5.0959
4.9653
4.8567
4.7650
4.6867
4.6189
4.5597
4.5075
4.4613
4.4199
4.3828
4.3492
4.3187
4.2909
4.2655
4.2421
4.2205
4.2006
4.1821

3
39.1655
15.4392
9.9792
7.7636
6.5988
5.8898
5.4160
5.0781
4.8256
4.6300
4.4742
4.3472
4.2417
4.1528
4.0768
4.0112
3.9539
3.9034
3.8587
3.8188
3.7829
3.7505
3.7211
3.6943
3.6697
3.6472
3.6264
3.6072
3.5894

4
39.2484
15.1010
9.6045
7.3879
6.2272
5.5226
5.0526
4.7181
4.4683
4.2751
4.1212
3.9959
3.8919
3.8043
3.7294
3.6648
3.6083
3.5587
3.5147
3.4754
3.4401
3.4083
3.3794
3.3530
3.3289
3.3067
3.2863
3.2674
3.2499

5
39.2982
14.8848
9.3645
7.1464
5.9876
5.2852
4.8173
4.4844
4.2361
4.0440
3.8911
3.7667
3.6634
3.5764
3.5021
3.4379
3.3820
3.3327
3.2891
3.2501
3.2151
3.1835
3.1548
3.1287
3.1048
3.0828
3.0626
3.0438
3.0265

6
39.3315
14.7347
9.1973
6.9777
5.8198
5.1186
4.6517
4.3197
4.0721
3.8807
3.7283
3.6043
3.5014
3.4147
3.3406
3.2767
3.2209
3.1718
3.1283
3.0895
3.0546
3.0232
2.9946
2.9685
2.9447
2.9228
2.9027
2.8840
2.8667

7
39.3552
14.6244
9.0741
6.8531
5.6955
4.9949
4.5286
4.1970
3.9498
3.7586
3.6065
3.4827
3.3799
3.2934
3.2194
3.1556
3.0999
3.0509
3.0074
2.9686
2.9338
2.9023
2.8738
2.8478
2.8240
2.8021
2.7820
2.7633
2.7460

8
39.3730
14.5399
8.9796
6.7572
5.5996
4.8993
4.4333
4.1020
3.8549
3.6638
3.5118
3.3880
3.2853
3.1987
3.1248
3.0610
3.0053
2.9563
2.9128
2.8740
2.8392
2.8077
2.7791
2.7531
2.7293
2.7074
2.6872
2.6686
2.6513
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Upper Quantiles of the F Distribution (a = 0.025)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9
39.3869

14.4731

8.9047

6.6811

5.5234

4.8232

4.3572

4.0260

3.7790

3.5879

3.4358

3.3120

3.2093

3.1227

3.0488

2.9849

2.9291

2.8801

2.8365

2.7977

2.7628

2.7313

2.7027

2.6766

2.6528

2.6309

2.6106

2.5919
2.5746

10
39.3980

14.4189

8.8439
6.6192

5.4613

4.7611

4.2951
3.9639

3.7168

3.5257

3.3736
3.2497

3.1469

3.0602

2.9862
2.9222

2.8664

2.8172

2.7737

2.7348

2.6998

2.6682

2.6396

2.6135
2.5896

2.5676

2.5473

2.5286
2.5112

11
39.4071

14.3742

8.7935

6.5678

5.4098

4.7095

4.2434

3.9121

3.6649

3.4737

3.3215

3.1975

3.0946

3.0078

2.9337

2.8696

2.8137

2.7645

2.7209

2.6819

2.6469

2.6152

2.5865

2.5603

2.5363
2.5143

2.4940

2.4752

2.4577

12
39.4146

14.3366

8.7512

6.5245

5.3662

4.6658

4.1997

3.8682

3.6209

3.4296

3.2773

3.1532

3.0502

2.9633

2.8890

2.8249

2.7689
2.7196

2.6758

2.6368

2.6017

2.5699

2.5411

2.5149

2.4908

2.4688

2.4484

2.4295
2.4120

16
39.4354

14.2315

8.6326

6.4032

5.2439

4.5428

4.0761

3.7441

3.4963

3.3044

3.1515

3.0269
2.9234

2.8360

2.7614

2.6968
2.6404

2.5907

2.5465

2.5071

2.4717

2.4396

2.4105

2.3840

2.3597

2.3373

2.3167

2.2976

2.2799

20
39.4479

14.1674

8.5599

6.3286

5.1684

4.4667

3.9995
3.6669

3.4185

3.2261

3.0728

2.9477

2.8437

2.7559

2.6808
2.6158
2.5590

2.5089

2.4645

2.4247

2.3890

2.3567

2.3273

2.3005

2.2759

2.2533

2.2324

2.2131

2.1952

25
39.4579

14.1155

8.5010

6.2679

5.1069

4.4045

3.9367

3.6035

3.3546

3.1616

3.0077

2.8821

2.7777

2.6894

2.6138
2.5484

2.4912

2.4408

2.3959
2.3558

2.3198

2.2871

2.2574

2.2303

2.2054

2.1826

2.1615

2.1419

2.1237

30
39.4646

14.0805

8.4613

6.2269

5.0652

4.3624

3.8940

3.5604

3.3110

3.1176

2.9633

2.8372

2.7324

2.6437

2.5678

2.5020

2.4445

2.3937

2.3486

2.3082

2.2718

2.2389

2.2090

2.1816

2.1565

2.1334

2.1121

2.0923

2.0739
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Upper Quantiles of the F Distribution (a — 0.010)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
98.5025

34.1162

21.1977

16.2582

13.7450

12.2464

11.2586

10.5614

10.0443

9.6460

9.3302

9.0738
8.8616

8.6831

8.5310

8.3997

8.2854

8.1849

8.0960

8.0166

7.9454

7.8811

7.8229

7.7698

7.7213

7.6767

7.6356

7.5977
7.5625

2
99.0000

30.8165

18.0000

13.2739

10.9248

9.5466

8.6491

8.0215

7.5594

7.2057

6.9266

6.7010
6.5149

6.3589

6.2262

6.1121

6.0129

5.9259

5.8489

5.7804

5.7190

5.6637

5.6136

5.5680

5.5263

5.4881

5.4529

5.4204

5.3903

3
99.1662

29.4567

16.6944

12.0600

9.7795

8.4513

7.5910

6.9919

6.5523

6.2167

5.9525
5.7394

5.5639

5.4170

5.2922

5.1850

5.0919
5.0103

4.9382

4.8740

4.8166

4.7649

4.7181

4.6755

4.6366

4.6009

4.5681

4.5378
4.5097

4
99.2494

28.7099

15.9770

11.3919

9.1483

7.8466

7.0061

6.4221

5.9943

5.6683

5.4120

5.2053
5.0354

4.8932

4.7726

4.6690

4.5790

4.5003

4.4307

4.3688

4.3134

4.2636

4.2184

4.1774

4.1400

4.1056

4.0740

4.0449
4.0179

5
99.2993

28.2371

15.5219
10.9670

8.7459

7.4604

6.6318

6.0569

5.6363

5.3160

5.0643

4.8616

4.6950

4.5556

4.4374

4.3359

4.2479

4.1708

4.1027

4.0421

3.9880

3.9392

3.8951

3.8550

3.8183

3.7848

3.7539

3.7254

3.6990

6
99.3326

27.9107

15.2069

10.6723

8.4661

7.1914

6.3707

5.8018

5.3858

5.0692

4.8206
4.6204

4.4558

4.3183

4.2016

4.1015

4.0146

3.9386

3.8714

3.8117

3.7583

3.7102

3.6667

3.6272

3.5911

3.5580

3.5276

3.4995

3.4735

7
99.3564

27.6717

14.9758
10.4555

8.2600

6.9928

6.1776

5.6129

5.2001

4.8861

4.6395

4.4410

4.2779

4.1415

4.0259

3.9267

3.8406

3.7653

3.6987

3.6396

3.5867

3.5390

3.4959

3.4568

3.4210

3.3882

3.3581

3.3303
3.3045

8
99.3742

27.4892

14.7989

10.2893

8.1017

6.8400

6.0289

5.4671

5.0567

4.7445

4.4994
4.3021

4.1399

4.0045

3.8896

3.7910

3.7054

3.6305

3.5644

3.5056

3.4530

3.4057

3.3629

3.3239

3.2884

3.2558

3.2259

3.1982

3.1726
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Upper Quantiles of the F Distribution (a = 0.010)

dfl
df2
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

9
99.3881

27.3452

14.6591

10.1578

7.9761

6.7188

5.9106

5.3511

4.9424

4.6315

4.3875

4.1911

4.0297

3.8948

3.7804

3.6822

3.5971

3.5225

3.4567

3.3981

3.3458

3.2986

3.2560

3.2172
3.1818

3.1494

3.1195

3.0920

3.0665

10
99.3992

27.2287

14.5459

10.0510

7.8741
6.6201

5.8143

5.2565

4.8491

4.5393

4.2961

4.1003

3.9394

3.8049

3.6909

3.5931

3.5082

3.4338
3.3682

3.3098

3.2576

3.2106
3.1681

3.1294

3.0941

3.0618

3.0320

3.0045

2.9791

11
99.4083

27.1326

14.4523

9.9626

7.7896

6.5382

5.7343

5.1779

4.7715

4.4624

4.2198

4.0245

3.8640

3.7299

3.6162

3.5185

3.4338

3.3596

3.2941

3.2359

3.1837

3.1368

3.0944

3.0558

3.0205

2.9882

2.9585

2.9311

2.9057

12
99.4159

27.0518

14.3736

9.8883

7.7183

6.4691

5.6667

5.1114

4.7059
4.3974

4.1553

3.9603

3.8001

3.6662

3.5527

3.4552

3.3706

3.2965

3.2311

3.1730

3.1209

3.0740

3.0316

2.9931

2.9578

2.9256

2.8959

2.8685

2.8431

16
99.4367

26.8269

14.1539

9.6802

7.5186

6.2750

5.4766

4.9240

4.5204
4.2134

3.9724

3.7783

3.6187
3.4852

3.3720

3.2748

3.1904

3.1165

3.0512

2.9931

2.9411

2.8943

2.8519

2.8133

2.7781
2.7458

2.7160

2.6886

2.6632

20
99.4492

26.6898

14.0196

9.5526

7.3958

6.1554

5.3591

4.8080

4.4054

4.0990

3.8584

3.6646
3.5052

3.3719

3.2587

3.1615

3.0771
3.0031

2.9377

2.8796

2.8274

2.7805

2.7380

2.6993

2.6640
2.6316

2.6017

2.5742

2.5487

25
99.4592

26.5790

13.9109

9.4491

7.2960

6.0580

5.2631

4.7130

4.3111

4.0051

3.7647

3.5710
3.4116

3.2782

3.1650

3.0676

2.9831

2.9089

2.8434

2.7850

2.7328

2.6856

2.6430

2.6041
2.5686

2.5360

2.5060

2.4783

2.4526

30
99.4658

26.5045

13.8377

9.3793

7.2285

5.9920

5.1981

4.6486

4.2469

3.9411

3.7008

3.5070

3.3476

3.2141

3.1007

3.0032

2.9185

2.8442

2.7785

2.7200

2.6675
2.6202

2.5773

2.5383

2.5026

2.4699

2.4397

2.4118

2.3860
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