PCR Primers Design

Mohammad-Sadegh Fallah, PhD Medical Molecular Genetics Kawsar Human Genetics Research Center

PCR

PCR

PCR

ARMS-PCR

Points in primer design

- ARMS primer sequences for a single nucleotide
- normal and mutant DNA sequences
- also known as allele-specific PCR (ASPCR)
- presence or absence of a PCR product is diagnostic for the presence or absence of the target allele

	Normal sequence	Mutant sequence
Normal primer	← C AGATAG5′ 5′GAACGCTCTATCGCGAT3′ 482	Х ^С с адатад5′ 5′даас <u>А</u> стстатсдсдатз′ ⁴⁸²
Mutant primer	X ^T C _{AGATAG5'} 5'GAACGCTCTATCGCGAT3' 482	T AGATAG5′ 5′GAACACTCTATCGCGAT3′ 482

Wt primer + Wt Sample DNA: PCR product

- oligonucleotides of around 30 or more bases
- Primers less than 28 bases long should be avoided
- Longer primers (up to 60-mers) may be used.
- For the mutant-specific primer (M), the 3 ' terminal base of the ARMS primer should be complementary to the mutation
- for the normal-specific primer (N), the 3 ' terminal base should be complementary to the corresponding normal sequence

- To enhance the specificity: a destabilizing mismatch incorporated at the 3rd nucleotide from the 3'terminus in each primer
- to increase the specificity of the ARMS reaction
- A single mismatch at the penultimate base is not sufficient to prevent extension
- A primer with two mismatches: is not extended

Tetra-primer ARMS- PCR

Points in primer design

- using oligo-primers flanking deletion breakpoints
- to detect known deletion mutations
- based upon the inability of PCR primers that are far apart to direct amplification
 - unless a deletion brings them closer together
- primer pairs are designed to flank a known deletion
- primer in border of deletion
 - mostly in normal area and 2 to 3 nucleotide in deletion area
- generating a unique amplicon that will be smaller in the mutant sequence compared with the wild type
- presence or absence of PCR product is detected by electrophoresis

Nested PCR

Points in primer design

Nested PCR

- second round of amplification on a fragment which is already the result of a PCR reaction
- In the "2nd" round reaction, the set of primers will be internal to those of the first round, thus amplifying a slightly shorter fragment

Nested polymerase chain reaction

Nested polymerase chain reaction

- intended to reduce non-specific binding in products due to the amplification of unexpected primer binding sites
- Nested PCR:
 - two sets of primers
 - used in two successive runs of PCR
 - the second set intended to amplify a secondary target within the first run product

- target DNA undergoes the first run of PCR with the first set of primers
- ensuring the product from the second PCR has little contamination from unwanted products of primer dimers, hairpins, and alternative primer target sequences

Multiplex PCR

- Multiple primer pairs can be added in the same tube to do the PCR
- Good for amplifying multiple sites
- Design difficulty
 - Melting temperatures should be similar
 - No primer dimer
 - Consider primer interaction

Primer 1

Designing primer for ARMS-PCR

PRIMER1: primer design for tetra-primer ARMS-PCR http://primer1.soton.ac.uk/primer1.html

Donce sequence (up to 1,0	<u>oo oasesj</u>	
AGTTAAATCA AGCCAJ	TAAA TATATG	AGAA AGAAGGCAAA TGAGCGTAGA
CTCCATAGTG		
AATGATGGAG GTTCCC	}acga gtcaaa′	Optimum primer Tm
GGTTTATGGA		
CAGAGUARACE CAGATA	TIGIG TIATGC	65
CCTGTTCTCC TGTCC1	GCTC AAGTCT	Maximum primer Tm
GTGGGTACTC	~~~~~	80
AGAAATGCCA TGCTTT	TTGTT TAGAGT	00
CAAGAAAAAG		Minimum primer Tm
CAAAATGGGC TTGTCT	IGTCC CATCAA	50
Position of SNP from start of	of sequence	Mariana anima CCO
401		Maximum primer GC%
Allele 1	1	80
A]	Minimum primer GC%
Allele 2	1	
G		20
Optimum primer size		Maximum complementarity
28		0 00
Maximum primer size	-	0.00
30		Maximum 3' complementarity
Minimum primer size	-	3.00
26		
Optimum (inner) product si	<u>ze</u>	Salt concentration (mM)
200		50
Maximum (inner) product si	ize	Appealing primer concentration (nMD
300		
Minimum (inner) product si	ize	50
100		Number of outputs
Maximum relative size diffe	rence of two inne	10
1.5		10
Minimum relative size differ	rence of two inne	Pick primers reset Help
11		

- Input target DNA sequence (FASTA)
- specify the polymorphic site
- define criteria for the primers (T_m, %GC, length and complementarity) and product sizes

57

57

57

Reverse inner primer (A allele): 427 CATGCTACACAGTCTAAGATGAAATAT 401

Forward outer primer (5' - 3'): 162 CTGATTTTAAGCATTAAGTATGGATATC 189

Reverse outer primer (5' - 3'): 565 AATGAATAGTTCAGTGTCTTTGACTC 540

Product size for G allele: 195 Product size for A allele: 266 Product size of two outer primers: 404

Primer 3

Designing primer for ARMS-PCR

BatchPrimer 3

- http://probes.pw.usda.gov/batchprimer3/
- Choose primer type
- Tetra Primers ARMS-PCR primers
- Input Sequences: Fasta/upload/browse/ Upload sequence file in FASTA format
- IUPAC code
- Pick Primers

BatchPrimer3 a high-throughput web tool for picking PCR and sequencing primers

BatchPrimer3 Home | Help | Primer3 Wiki | Copyright Notice and Disclaimer of Primer3 | Acknowledgements

Tetra Primer ARMS PCR Primer Settings

Primer Size	Min: 20	Opt: 25	Max: 30
Primer Tm	Min: 60	Opt: 68	Max: 80
Max Tm Difference:	5		
Primer GC%	Min: 20	Max: 80	
Inner product size	Min: 100	Opt: 200	Max: 400
<u>Relative size difference</u> between inner product sizes	Min: 1.0	Мах: 1.6	
Max #N's:	0		
Salt Concentration:	50	DNA Concentration:	50
Max Self Complementarity:	8	Max 3' Self Complementarity;	3

Report of BatchPrimer3 Primer Design

Help | View primers in HTML table format | View primers in tab-delimited table format Save as a tab-delimited text file | Save as an Excel file | Primer Report Statistics | Download entire results (a zip file)

Primer type: Tetra-primer ARMS PCR primers

Sequence Index: 1

Sequence ID: gnl[dbSNP]rs7202116]allelePos=401[totalLen=801]taxid=9606[snpclass=1]alleles='WG'[mol=Genomic]build=135

Outer primers for tetra-primer ARMS PCR:

	Orientation	Start	Len	Tm	GC%	Any compl	3' compl	Primer Seq	Product Size	Seq Size	Included Size	Pair_any	Pair_3'
1	FORWARD	369	24	46.71	29.17	6.00	0.00	TAAGTCTGGTATATCTAACTAATC	71	801	801	4.00	1.00
	REVERSE	439	19	47.35	47.37	5.00	2.00	GTCTACTAGGGACATGCTA					

Inner primers for tetra-primer ARMS PCR:

	Orientation	Start	Len	Tm	GC%	Any compl	3' compl	Score	SNP	Pos	Primer Seq	Product Size	Seq Size	Included Size	Pair_any	Pair 3'
1	FORWARD	377	25	46.93	24	6.00	2.00	76.18	A	401	GTATATCTAACTAATCATATAACCA	63	801	801	3.00	1.00
2	REVERSE	425	23	47.97	34.78	5.00	1.00	71	G	401	CTACACAGTCTAAGATGAAATAC	55	801	801	5.00	3.00

Primer Report Statistics

Total sequences input: 1

Number of sequences with sucessful primer sets: 2

Number of sequences without primer picked: 0

Total primer sets picked: 1

Used time: 1 seconds.

Primer BLAST

Designing primer for PCR

Design PCR primers and check them for specificity

• A TARGET TEMPLATE SEQUENCE OR ACCESSION NUMBER

- Go to the <u>Primer BLAST</u> submission form.
- Enter the target sequence in FASTA format or an accession number of an NCBI nucleotide sequence in the PCR Template section of the form
- Click the "Get Primers" button to submit the search and retrieve specific primer pairs.