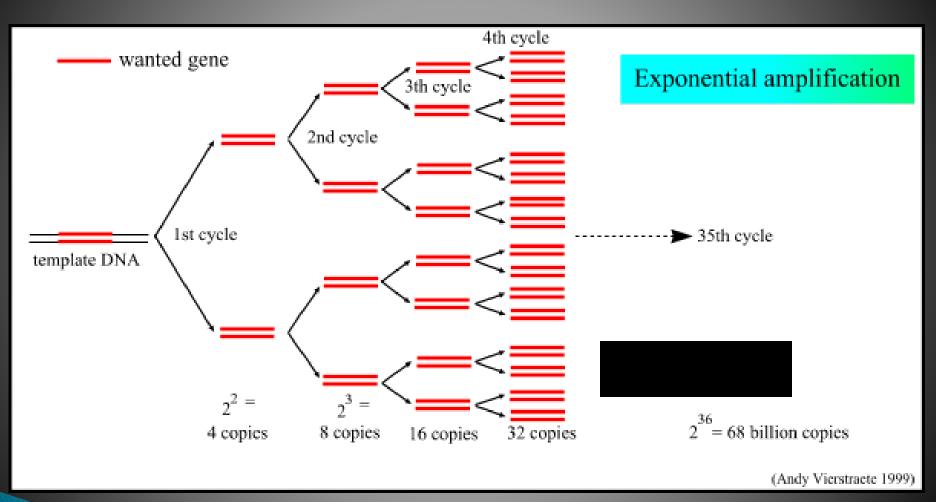
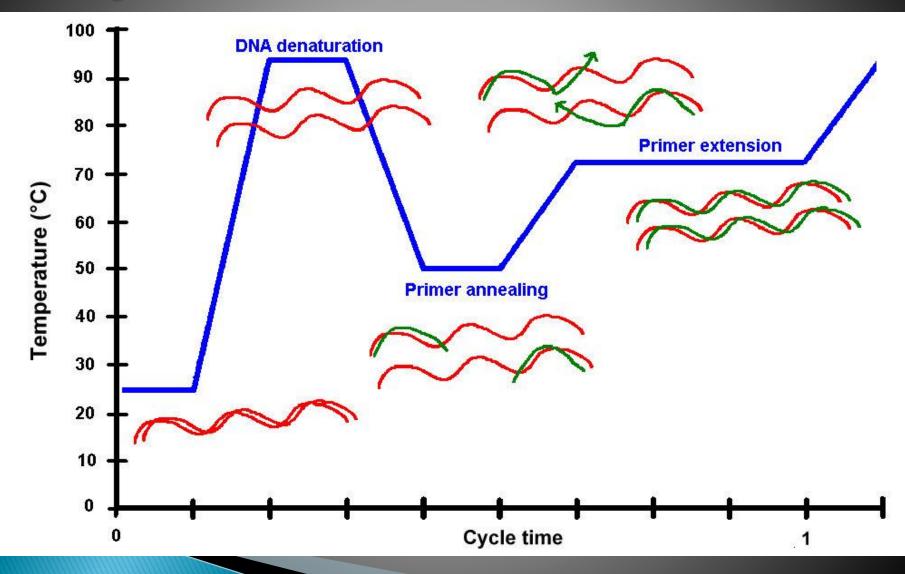
PCR Primers Design Azita Zadeh-Vakili, PhD Medical Biotechnologist


Modern molecular Biology

- Molecular biology methods has been revolutionized by these tools and thechniques:
 - Restriction endonucleases
 - Gene cloning
 - Oligonucleotide synthesis


Polymerase Chain Reaction

- Discovered by Kary *Mullis* in 1985.
- Old in theory and highly "Amplify" large quantities of DNA (µg quantities) from small verticate quantities of DNA (µg quantities) from amplification]
- The objective is to amplify a specific DNA segment without any nonspecific byproducts

Exponential Amplification

Polymerase Chain Reaction

PCR Variables

- 1. Temperature
- 2. Cycle Times and Temps
- 3. Primers
- 4. Buffer
- 5. Polymerase

Temperature

Denaturation

- Trade off between denaturing DNA and DNA Polymerase half-life
 - Taq half-life 40min at 95 °, 10min at 97.5°

Annealing

 Trade off between efficient annealling and specificity (2-5 ° below Tm)

Extension

• Optimum Temperature for polymerase

Cycle Times and Temps

Typical PCR Run

Step Time/Temp 3-5 min at 94° 15-120 Sec at 94° 15-60 Sec at 50-70° 1-2 min at 72° 5 min 72° 5 min 4° End

x20-30

The Melting Temperature

• $T_m(^{\circ}C) = 4(G+C) + 2(A+T)$

This formula (the Wallace rule), is valid for oligos <15 bases and assumes that the reaction is carried out in the presence of 50mM monovalent cations of a particular DNA duplex will dissociate and become single Annealing Temp: Tm -5 strand DNA

• $T_A = 0.3$ (Tm primer)+ 0.7(Tm Product) -25

Basic Tm Calculations

example primer	GC+AT=length	Wallace rule	Santa Lucia
50/50 mixed: AGAGAGAGAGAGAGAGAGAGAG	10+10=20	60	47.7
50/50 separated: AAAAAAAAAAGGGGGGGGGGG	10+10=20	60	52.7

Nearest-Neighbor method (SantaLucia equation)

 The most sophisticated T_m calculations take into account the exact sequence and base stacking parameters, not just the base composition

$T_{m}(^{o}C) = (\Delta H/ (\Delta S + R \ln[C])) - 273.15$

Where:

- Δ H (kcal/mole) is the enthalpy of base stacking
- ΔS (kcal/mole) is the entropy of base stacking
- R is the universal gas constant (1.987Cal/°C*Mol)
- [C] is oligonucleotide strand concentration

Primer design

Critical to both the efficiency and the accuracy of the PCR

Consideration	Comment
Primer Melting Temperature (Tm)	55°-72°C
Primer Annealing Temperature (Ta)	~5°C < the lowest Tm of the of primers
Tm difference between forward and reverse primers	≤ 5°C
Primer Annealing Temperature (Ta)	~5°C < the lowest Tm of the of primers
Max 3' Stability	ΔG value for five bases from 3' end
Percentage GC content	40-60%
No Secondary Structures	Identify primer pairs which do not assume secondary structure
No self-complementarity	< 4 contiguous bases
No complementarity to other primer(s)	< 4 contiguous bases
No long runs with the same base	< 4 contiguous bases
Distance between two primers on target sequence	< 2000 bases apart
Plateau Effect	accumulation of product ≤ 0.3 to 1 pmol

Primers

- Paired flanking primers
- Length (17-28bp)
- GC content 50-60%
- GC Clamp
- (The presence of 1-3 G or C bases within the last five bases from the 3' end of primers)
- Tm's between 55-80
- ► Avoid simple sequences e.g. strings of G's
- Avoid primer self complementary
 - e.g. hairpins, homodimers, heterodimers

PCR Specificity

- The specificity of PCR is determined by the specificity of the PCR primers Avoid the similarity
- Prevention of primers nonspecific binding (binding to more than one locus, e.g. paralog or common domain), effectively increases PCR specificity.

Primer Specificity

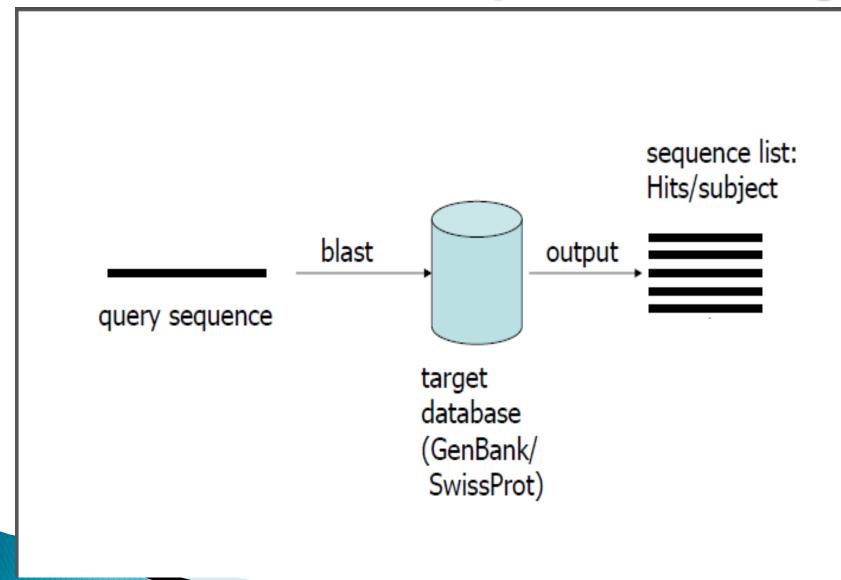
Similarity Searching using Basic Local Alignment Search Tools

The family of **BLAST** programs provides a powerful way to compare a query sequence against a sequence database

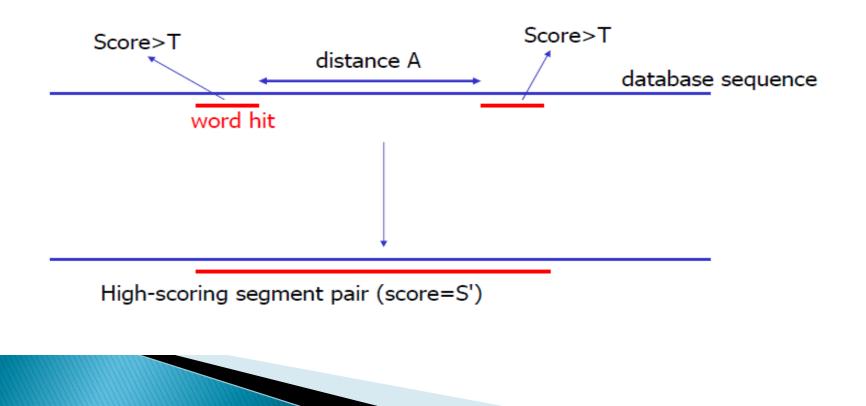
BLAST improved overall speed of searches

BLAST maintains good sensitivity

BLAST Algorithm


Scoring of matches done using scoring matrices
 Sequences are split into words (default n=3)

 Speed, computational efficiency


BLAST algorithm extends the initial "seed" hit into an HSP

• HSP = high scoring segment pair = Local optimal alignment

BLAST: discover sequence omology

Join words on same diagonal (ungapped)

Join words on same diagnonal

High-scoring segment pair (score=S')

Extend HSP until score drops small amount below highest score of shorter alignment

database sequence

score S for this alignment stop extension extend to left (similar to right) If S>threshold (based on random sequences) then keep HSP

Where does the score (S) come from?

- The quality of each pair-wise alignment is represented as a score and the scores are ranked.
- Scoring matrices are used to calculate the score of the alignment base by base (DNA) or amino acid by amino acid (protein).
- The alignment score will be the sum of the scores for each position.

What's a scoring matrix?

- Substitution matrices are used for amino acid alignments.
 - each possible residue substitution is given a score
- A simpler unitary matrix is used for DNA pairs (+1 for match, -2 mismatch)

	A	С	D	E	F	G	Н —>
А	4	0	-2	-1	-2	0	-2
С	0	9	-3	-4	-2	-3	-3
D	-2	-3	6	2	-3	-1	-1
Е	-1	-4	2	5	-3	-2	9
F	-2	-2	-3	-3	6	-3	{
G	0	-3	-1	-2	-3	6	-
н	-2	-3	-1				
¥					BLC	วรบ	M 62

BLAST programs

Program	Description
blastp	Compares an amino acid query sequence against a protein sequence database.
blastn	Compares a nucleotide query sequence against a nucleotide sequence database.
blastx	Compares a nucleotide query sequence translated in all reading frames against a protein sequence database. You could use this option to find potential translation products of an unknown nucleotide sequence.
tblastn	Compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames.
tblastx	Compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide