

Data Mining: Model Evaluation

Dr O. Pournik MD, MPH, MSc, PhD

pournik@gmail.com

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 - Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix

	PREDICTED CLASS			
		Class=Yes	Class=No	ā
ACTUAL	Class=Yes	а	b	k
CLASS	Class=No	С	d	(

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS			
		Class=Yes	Class=No	а
ACTUAL	Class=Yes	а	b	b c
CLASS	Class=No	С	d	d

a: TP (true positive) b: FN (false negative) c: FP (false positive) d: TN (true negative)

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %
 - Accuracy is misleading because model does not detect any class 1 example

Cost Matrix

• C(i/j): Cost of misclassifying class j example as class i

	PREDICTED CLASS		
	C(i j)	Class=Yes	Class=No
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)
CLASS	Class=No	C(Yes No)	C(No No)

Cost vs Accuracy

Count	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL	Class=Yes	а	b
CLASS	Class=No	С	d
Cost	PREI	DICTED CI	ASS
Cost	PREI	DICTED CI Class=Yes	-ASS Class=No
Cost ACTUAL	PREI Class=Yes	DICTED CI Class=Yes P	-ASS Class=No Q

Accuracy is proportional to cost if 1. C(Yes | No)=C(No | Yes) = q 2. C(Yes | Yes)=C(No | No) = p

N = a + b + c + d

(

Accuracy = (a + d)/N

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) = $\frac{a}{a+b}$
F-measure (F) = $\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

Dr. O. Pournik MD, MPH, MSc, PhD

Methods of Estimation Sampling strategies

- Holdout
 - Reserve 2/3 for training and 1/3 for testing
- Random subsampling
 - Repeated holdout
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
 - oversampling vs. under sampling
- Bootstrap
 - Sampling with replacement

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Performance Evaluation
 - How to obtain reliable estimates?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - changing the threshold of algorithm, sample distribution or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- any points located at x > t is classified as positive

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

Using ROC for Model Comparison

Dr. O. Pournik MD, MPH, MSc, PhD

گرو^وانفورماتیک^{یز ش}کی

Any Questions?